Skip to main content
Log in

Comparison of styrene removal in air by positive and negative DC corona discharges

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This communication discusses styrene removal in air by positive and negative DC corona discharges. Experiments were performed with a wire-plate reactor and under a gas flow rate of 305 m3/h. In terms of averaged applied voltage and corona current, it is observed that the maximum negative corona current is always at least two times larger than the positive one at the same voltage level. At the same corona discharge energy density, however, the positive corona discharge produces around 2–6 times more ozone in comparison with the negative corona. For styrene removal, the positive corona processing is also around 2–6 times more effective than the negative corona. Humidity, an important and variable component of ambient air, affects the positive corona processing significantly. But it exerts a moderate effect on the negative corona. The differences between positive corona and negative corona discharges are attributed to their different discharge properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anderson GK, Snyder H, Coogan J (1999) Oxidation of styrene in a silent discharge. Plasma Chem Plasma Process 19(1):131–151

    Article  CAS  Google Scholar 

  • Chang JS, Lawless A, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152–1166

    Article  CAS  Google Scholar 

  • Chang CL, Bai H, Lu SJ (2005) Destruction of styrene in an air stream by packed dielectric barrier discharge reactors. Plasma Chem Plasma Process 25(6):641–657

    Article  CAS  Google Scholar 

  • Cooray V, Rahman M (2005) Efficiencies for production of NOx and O3 by streamer discharges in air at atmospheric pressure. J Electrostat 63:977–983

    Article  CAS  Google Scholar 

  • Durme JV, Dewulf J, Sysmans W, Leys C, Langenhove HV (2007a) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68(10):1821–1829

    Article  Google Scholar 

  • Durme JV, Dewulf J, Sysmans W, Leys C, Langenhove HV (2007b) Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl Catal B Environ 74(1–2):161–169

    Article  Google Scholar 

  • Fan X, Zhu T, Sun Y, Yan X (2011) The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. J Hazard Mater 196:380–385

    Article  CAS  Google Scholar 

  • Gallon HJ, Tu X, Twigg MV, Whitehead JC (2011) Plasma-assisted methane reduction of a NiO catalyst-low temperature activation of methane and formation of carbon nanofibres. Appl Catal B Environ 106(3–4):616–620

    Article  CAS  Google Scholar 

  • Hensel K, Katsura S, Mizuno A (2005) DC micro discharges inside porous ceramics. IEEE Trans Plasma Sci 33(2):574–575

    Article  CAS  Google Scholar 

  • Kim HH (2004) Non-thermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym 1(2):91–110

    Article  Google Scholar 

  • Lu B, Zhang X, Yu X, Feng T, Yao S (2006) Catalytic oxidation of benzene using DBD corona discharges. J Hazard Mater B137(1):633–637

    Article  Google Scholar 

  • Marotta E, Callea A, Ren X, Rea M, Paradisi C (2008) DC Corona electric discharges for air pollution control, 2-ionic intermediates and mechanisms of hydrocarbon processing. Plasma Process Polym 5(2):146–154

    Article  CAS  Google Scholar 

  • McAdams R (2001) Prospects for non-thermal atmospheric plasmas for pollution abatement. J Phys D Appl Phys 34(18):2810–2821

    Article  CAS  Google Scholar 

  • Mok YS, Demidyuk V, Whitehead JC (2008) Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor. J Phys Chem A 112(29):6386–6591

    Article  Google Scholar 

  • Nair SA, Yan K, Pemen AJM, van Heesch EJM, Drinkenburg AAH (2004) Tar removal from biomass-derived fuel gas by pulsed corona discharges: a chemical kinetic study. Ind Eng Chem Res 43(7):1649–1658

    Article  CAS  Google Scholar 

  • Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Wallman PH, Kuthi A, Burkhart CP, Bayless JR (1997) Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing. Plasma Sources Sci Technol 6:251–259

    Article  CAS  Google Scholar 

  • Schiorlin M, Marotta E, Rea M, Paradisi C (2009) Comparison of toluene removal in air at atmospheric conditions by different corona discharges. Environ Sci Technol 43(24):9386–9392

    Article  CAS  Google Scholar 

  • Tanthapanichakoon W, Charinpanitkul T, Chaiyo S, Dhattavorn N, Chaichanawong J, Sano N, Tamon H (2004) Effect of oxygen and water vapor on the removal of styrene and ammonia from nitrogen by non-pulse corona-discharge at elevated temperatures. Chem Eng J 97(2–3):213–223

    Article  CAS  Google Scholar 

  • Tu X, Verheyde B, Corthals S, Paulussen S, Sels BF (2011) Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure. Phys Plasmas 18(8):080702 1–4

    Google Scholar 

  • Vandenbroucke AM, Morent RN, Geyter D, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195(15):30–54

    Article  CAS  Google Scholar 

  • Wan Y, Fan X, Zhu T (2011) Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chem Eng J 171(1):314–319

    Article  CAS  Google Scholar 

  • Yan K, Heesch EJM, Pemen AJM, Huijbrechts PAHJ (2001a) From chemical kinetics to streamer corona reactor and voltage pulse generator. Plasma Chem Plasma Process 21(1):107–137

    Article  CAS  Google Scholar 

  • Yan K, Yamamoto T, Kanazawa S, Ohkubo T, Nomoto Y, Chang JS (2001b) NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations. IEEE Trans Ind Appl 37(5):1449–1504

    Article  Google Scholar 

  • Yan NQ, Qu ZJ, Jia P, Wang XP, Wu D (2006) Removal characteristics of gaseous sulfur-containing compounds by pulsed corona plasma. Ind Eng Chem Res 45(19):6420–6427

    Article  CAS  Google Scholar 

  • Yao S, Nakayama A, Suzuki E (2001) Methane conversion using a high-frequency pulsed plasma: discharge features. AIChE J 47(2):419–426

    Article  CAS  Google Scholar 

  • Yehia A, Abdel-Salam M, Mizuno A (2000) On assessment of ozone generation in DC coronas. J Phys D Appl Phys 33:831–835

    Article  CAS  Google Scholar 

  • Zhang X, Chen W, Zhu J, Feng W, Yan K (2010) Aerosol formation and decomposition of benzene derivatives by AC/DC streamer corona discharge. 7th International Symposium. Non-Thermal Plasma Technol. (ISNTP-7), Special Issue of Int J Plasma Environ Sci Technol 4 (2):130–134

  • Zhang X, Zhu J, Li X, Liu Z, Ren X, Yan K (2011) Characteristics of styrene removal with an AC/DC streamer corona plasma system. IEEE Trans Plasma Sci 39(6):1481–1488

    Google Scholar 

  • Zhu T, Li J, Jin Y, Liang Y, Ma G (2008) Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effect. Int J Environ Sci Tech 5(3):375–384

    Article  CAS  Google Scholar 

  • Zhu T, Li J, Jin YQ, Liang YH, Ma GD (2009) Gaseous phase benzene decomposition by non-thermal plasma coupled with nano Titania catalyst. Int J Environ Sci Tech 6(1):141–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported financially by the Natural Science Foundation of China (NSFC-N10711), China Postdoctoral Science Foundation (No.X90906), National High Technology Research and Development Program of China (863 Program) (No.SS2013AA0616), and the fundamental research funds for the central universities 2012XZZX001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Feng, W., Yu, Z. et al. Comparison of styrene removal in air by positive and negative DC corona discharges. Int. J. Environ. Sci. Technol. 10, 1377–1382 (2013). https://doi.org/10.1007/s13762-012-0175-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0175-y

Keywords

Navigation