Skip to main content

Advertisement

Log in

Abatement of Trichloromethane by Using Nonthermal Plasma Reactors

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This work investigated the destruction of a halogenated carbon (trichloromethane) using different types of nonthermal plasma reactors. Three reactors, i.e., a surface discharge reactor, a dielectric-packed bed reactor and a barrier discharge reactor with a perforated dielectric tube, were compared with respected to the trichloromethane destruction efficiency. The effect of oxygen content and input power on the trichloromethane destruction was examined, and the byproducts were analyzed to elucidate the destruction pathways. The dielectric-packed bed reactor was found to show better performance in the trichloromethane destruction than the other two reactors. The increase in the oxygen content decreased the destruction efficiency, and the highest destruction efficiency was obtained at oxygen content 0.5%. The calculations for electron-molecule collisions indicated that the most abundant reactive species initiating the destruction of trichloromethane are metastable nitrogen molecules. The major byproducts were CO and Cl2, and the formations of NO2 and N2O were also significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun JW, Park DW (2003) Korean J Chem Eng 20:476

    Article  Google Scholar 

  2. Sichler P, Büttgenbach S, Baars-Hibbe L, Schrader C, Gericke K-H (2004) Chem Eng J 101:465

    Article  Google Scholar 

  3. Kim HH (2004) Plasma Proc Polym 1:91

    Article  Google Scholar 

  4. Mizeraczyk J, Jasinski M, Zakrzewski Z (2005) Plasma Phys Control Fusion 47:B589

    Article  Google Scholar 

  5. Kuroki T, Mine J, Okubo M, Yamamoto T, Saeki N (2005) IEEE Trans Ind Appl 41:215

    Article  Google Scholar 

  6. Fitzsimmons C, Ismail F, Whitehead JC, Wilman JJ (2000) J Phys Chem A 104:6032

    Article  Google Scholar 

  7. Kang HC (2002) J Ind Eng Chem 8:488

    Google Scholar 

  8. Ricketts CL, Wallis AE, Whitehead JC, Zhang K (2004) J Phys Chem A 108:8341

    Article  Google Scholar 

  9. Futamura S, Gurusamy A (2005) J Electrostat 63:949

    Article  Google Scholar 

  10. Ogata A, Kim HH, Futamura S, Kushiyama S, Mizuno K (2004) Appl Catal B Environ 53:175

    Article  Google Scholar 

  11. Wallis AE, Whitehead JC, Zhang K (2007) Catal Lett 74:29

    Article  Google Scholar 

  12. Yu SJ, Chang MB (2001) Plasma Chem Plasma Proc 21:311

    Article  ADS  Google Scholar 

  13. Mok YS (2006) Plasma Sci Technol 8:661

    Article  ADS  Google Scholar 

  14. Oda T, Takahashi T, Nakano H, Masuda S (1993) IEEE Trans Ind Appl 29:787

    Article  Google Scholar 

  15. Yamamoto T, Mizuno K, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G (1996) IEEE Trans Ind Appl 32:100

    Article  Google Scholar 

  16. Chen HL, Lee H-M, Cheng LC, Chang MB, Yu SJ, Li S-N (2008) IEEE Trans Plasma Sci 36:509

    Article  ADS  Google Scholar 

  17. Park JY, Jung JG, Kim JS, Rim G-H, Kim K-S (2003) IEEE Trans Plasma Sci 31:1349

    Article  ADS  Google Scholar 

  18. Kim Y, Kim K-T, Cha MS, Song Y-H, Kim SJ (2005) IEEE Trans Plasma Sci 33:1041

    Article  ADS  Google Scholar 

  19. Föglein KA, Szabó PT, Babievskaya IZ, Szépvölgyi J (2005) Plasma Chem Plasma Proc 25:289

    Article  Google Scholar 

  20. Song HK, Choi J-W, Lee H, Indarto A (2005) Toxicol Environ Chem 87:509

    Article  Google Scholar 

  21. Futamura S, Yamamoto T (1997) IEEE Trans Ind Appl 33:447

    Article  Google Scholar 

  22. Kulikovsky AA (2001) IEEE Trans Plasma Sci 29:313

    Article  ADS  Google Scholar 

  23. Mok YS, Kim JH, Ham SW, Nam I (2000) Ind Eng Chem Res 39:3938

    Article  Google Scholar 

  24. Tas MA, van Hardeveld R, van Veldhuizen EM (1997) Plasma Chem Plasma Proc 17:371

    Article  Google Scholar 

  25. Sathiamoorthy G, Kalyana S, Finney WC, Clark RJ, Locke BR (1999) Ind Eng Chem Res 39:1844

    Article  Google Scholar 

  26. Biggs P, Canosa-Mas CE, Percival CJ, Shallcross DE, Wayne RP (1999) Int J Chem Kinet 31:433

    Article  Google Scholar 

  27. National Institute of Standards and Technology Chemical Kinetics Database: Version 2Q98 (1998)

  28. Ogata A, Mizuno K, Kushiyama S, Yamamoto T (1999) Plasma Chem Plasma Proc 18:363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Mok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mok, Y.S., Lee, SB., Oh, JH. et al. Abatement of Trichloromethane by Using Nonthermal Plasma Reactors. Plasma Chem Plasma Process 28, 663–676 (2008). https://doi.org/10.1007/s11090-008-9151-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9151-1

Keywords

Navigation