Skip to main content
Log in

Plasma Reactivity and Plasma-Surface Interactions During Treatment of Toluene by a Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Toluene removal is investigated in filamentary plasmas produced in N2 and in N2/O2 mixtures by a pulse high voltage energised DBD. Influence of the oxygen percentage (lower than 10%) and of the temperature (lower than 350°C) is examined. Toluene is removed in N2 through collisions with electrons and nitrogen excited states. The removal efficiency is a few higher in N2/O2. It increases when the temperature increases for N2 and N2/O2. Both H- and O-atoms play an important role in toluene removal because H can readily recombine with O to form OH, which is much more reactive with toluene than O. H follows from dissociation of toluene and of hydrogenated by-products by electron collisions. Detection of cyanhidric acid, acetylene, formaldehyde, and methyl nitrate strengthens that dissociation processes, to produce H and CH3, must be taken into account in kinetic analysis. Formation and treatment of deposits are also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Koppmann R (ed) (2007) Volatile organic compounds in the atmosphere. Blackwell Publishing, Oxford

  2. Van Winkle M, Scheff P (2001) Indoor Air 11:49

    Article  Google Scholar 

  3. Krasnoperov L, Krishtopa L, Bozzelli W (1997) J Adv Oxid Technol 2:248

    Google Scholar 

  4. Vercammen K, Berezin A (1997) J Adv Oxid Technol 2:312

    Google Scholar 

  5. Rosocha L, Korzekwa R (1999) J Adv Oxid Technol 4:247

    Google Scholar 

  6. Yan K, van Heesch E, Pemen A, Huijbrechts P (2001) Plasma Chem Plasma Proc 21:107

    Article  Google Scholar 

  7. Mok Y, Nam C, Cho M, Nam I-S (2002) IEEE Trans Plasma Sci 30:408

    Article  ADS  Google Scholar 

  8. Pasquiers S (2004) Euro Phys J: Appl Phys 28:319

    Article  ADS  Google Scholar 

  9. Kim H-H (2004) Plasma Process Polym 1:91

    Article  Google Scholar 

  10. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B: Environ 78:324

    Article  Google Scholar 

  11. Yamamoto T, Ramanathan K, Lawless P, Ensor D, Newsome J, Plaks N, Ramsey G (1992) IEEE Trans Ind Appl 28:528

    Article  Google Scholar 

  12. Nunez C, Ramsey G, Ponder W, Abbot J, Hamel L, Kariher P (1993) Air Waste 43:242

    Google Scholar 

  13. Yamamoto T, Chang J-S, Berezin A, Kohno H, Honda S, Shibuya A (1996) J Adv Oxid Technol 1:67

    Google Scholar 

  14. Vitale S, Bromberg L, Hadidi K, Falkos P, Cohn D (1996) Chemtech 26:58

    Google Scholar 

  15. Chang M, Chang C-C (1997) Am Inst Chem Eng (AIChE) J 43:1325

    Google Scholar 

  16. Krasnoperov L, Krishtopa L, Bozzelli J (1997) J Adv Oxid Technol 2:248

    Google Scholar 

  17. Smulders E, van Heesch B, van Paasen S (1998) IEEE Trans Plasma Sci 26:1476

    Article  ADS  Google Scholar 

  18. Kohno H, Berezin A, Chang J-S, Tamura M, Yamamoto T, Shibuya A, Honda S (1998) IEEE Trans Ind Appl 34:953

    Article  Google Scholar 

  19. Falkenstein Z (1999) J Appl Phys 85:525

    Article  ADS  Google Scholar 

  20. Sjöberg A, Teich T, Heinzle E, Hungerbühler K (1999) J Adv Oxid Technol 4:319

    Google Scholar 

  21. Pekàrek S, Kriha V, Pospisil M, Viden I (2001) J Phys D: Appl Phys 34:L117

    Article  ADS  Google Scholar 

  22. Rudolph R, Francke K-P, Miessner H (2002) Plasma Chem Plasma Proc 22:401

    Article  Google Scholar 

  23. Kang M, Kim B, Cho S, Chung C, Kim B, Han G, Yoon K (2002) J Mol Catal A 180:125

    Article  Google Scholar 

  24. Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T (2002) Appl Catal A 236:9

    Article  Google Scholar 

  25. Song Y, Cha M, Kim Y, Kim K, Kim S, Han S, Choi K (2003) J Adv Oxid Technol 6:11

    Google Scholar 

  26. Koutsospyros A, Yin S, Christodoulatos C, Becker K (2004) Int J Mass Spect 233:305

    Article  Google Scholar 

  27. Machala Z, Marode E, Morvova M, Lukac P (2005) Plama Process Polym 2:152

    Article  Google Scholar 

  28. Harling A, Kil H-H, Futamura S, Whitehead J (2007) J Phys Chem C 111:5090

    Article  Google Scholar 

  29. Guo Y, Ye D, Chen K, He J (2007) Catal Today 126:328

    Article  Google Scholar 

  30. Demidyuk V, Whitehead J (2007) Plasma Chem Plasma Proc 27:85

    Article  Google Scholar 

  31. Van Durne J, Dewulf J, Sysman W, Leys C, Van Langenhove H (2007) Chemosphere 68:1821

    Article  Google Scholar 

  32. Hsiao M, Penetrante B, Merritt B, Vogtlin G, Wallman P (1997) J Adv Oxid Technol 2:306

    Google Scholar 

  33. Lombardi G, Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher J-R (2007) Plasma Chem Plasma Proc 27:414

    Article  Google Scholar 

  34. Magne L, Pasquiers S, Blin-Simiand N, Postel C (2007) J Phys D: Appl Phys 40:3112

    Article  ADS  Google Scholar 

  35. Blin-Simiand N, Jorand F, Belhadj-Miled Z, Pasquiers S, Postel C (2007) Int J Plasma Environ Sci Technol 1:64

    Google Scholar 

  36. Blin-Simiand N, Magne L, Pasquiers S, Jorand F, Postel C (2007) 18th Int Symp Plasma Chem, Kyoto (Japan), contributed paper on CD-Rom

  37. Molspec: Synthetic molecular spectra generator based on the HITRAN database. Laser Components GmbH, Olching, Germany. http://www.lasercomponents.com

  38. Cantrell C, Davidson J, McDaniel A, Shetter R, Calvert J (1988) Chem Phys Lett 148:358

    Article  ADS  Google Scholar 

  39. Korolevich M, Sivchik V, Zhbankov R, Lastochkina V (1986) J Appl Spectrosc 45:1275

    Article  ADS  Google Scholar 

  40. Kossyi I, Kostinsky A, Matveyev A, Silakov V (1992) Plasma Sources Sci Technol 1:207

    Article  ADS  Google Scholar 

  41. Mallard W, Westley F, Herron J, Hampson R, Frizzell D (1998) NIST Chemical kinetics database (version 2Q98)

  42. Legrand J, Diany A, Hrach R, Hrachová V (1997) Beitr Plasma Phys 37:521

    Article  ADS  Google Scholar 

  43. Tsai C, McFadden D (1990) J Phys Chem 94:3298

    Article  Google Scholar 

  44. Herron J (1999) J Phys Chem Ref Data 28:1453

    Article  ADS  Google Scholar 

  45. Meyer J, Klosterboer D, Setser D (1971) J Chem Phys 55:2084

    Article  ADS  Google Scholar 

  46. Suzuki S, Suzuki T, Itoh H (2007) In: Proc 28th ICPIG, July 15–20, Prague, Czech Republic

  47. Baulch D, Cobos C, Cox R, Frank P, Hayman G, Just Th, Kerr J, Murrells T, Pilling M, Troe J, Walker R, Warnatz J (1994) J Phys Chem Ref Data 23:847

    Article  ADS  Google Scholar 

  48. Eliasson B (1983) Brown Boveri Forschungszentrum: electrical discharge in oxygen. Part I: basic data and rate coefficients. Report KLR 83-40C, Baden, Switzeland

  49. Pignolet P, Hadj-Ziane S, Held B, Peyrous R, Benas J, Coste C (1990) J Phys D 23:1069

    Article  ADS  Google Scholar 

  50. Atkinson R (1990) Atmos Environ 24A:1

    Google Scholar 

  51. Atkinson R, Baulch D, Cox R, Hampson R, Kerr J, Rossi M, Troe J (1999) J Phys Chem Ref Data 28:191

    Article  ADS  Google Scholar 

  52. Master Chemical Mechanism, Leeds University, GB: http://www.mcm.leeds.ac.uk/MCM/

  53. Eliasson B, Kogelschatz U (1991) IEEE Trans Plasma Sci 19:309

    Article  ADS  Google Scholar 

  54. Ognier S, Cavadias S, Amouroux J (2007) Plasma Process Polym 4:528

    Article  Google Scholar 

  55. Urashima K, Chang J, Ito T (1997) IEEE Ind Appl Soc Ann Meeting. New Orleans, USA

    Google Scholar 

  56. Frish MJ et al (1998) GAUSSIAN 98, Revision A.9. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  57. Piper L (1987) J Chem Phys 37:1625

    Article  ADS  Google Scholar 

  58. Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2000) Appl Phys Lett 77:4118

    Article  ADS  Google Scholar 

  59. Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2002) Plasma Sources Sci Technol 11:152

    Article  ADS  Google Scholar 

  60. Aldrich Library of FTIR spectra: vapor phase. Edition 1. (1989) Aldrich Chemical Compagny, Inc.

  61. Hayashi N, Suganuma H, Kamatani M, Satoh S, Yamabe C (2001) Jpn J Appl Phys 40:6104

    Article  ADS  Google Scholar 

  62. Martin L, Ognier S, Daou F, Amouroux J (2005) High Temp Mat Proc 9:531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Blin-Simiand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blin-Simiand, N., Jorand, F., Magne, L. et al. Plasma Reactivity and Plasma-Surface Interactions During Treatment of Toluene by a Dielectric Barrier Discharge. Plasma Chem Plasma Process 28, 429–466 (2008). https://doi.org/10.1007/s11090-008-9135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9135-1

Keywords

Navigation