Skip to main content
Log in

Destruction of Styrene in an Air Stream by Packed Dielectric Barrier Discharge Reactors

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study presents the decomposition rates of styrene vapors with non-packed and packed bed dielectric barrier discharge reactors. The concentrations of intermediate byproducts at various plasma operation conditions were evaluated. The results showed that although styrene vapors could be almost completely removed at low styrene inlet concentration of 132 ppm, the selectivity of CO2 as the major product was rather low in a non-packed bed reactor. It was found that solid carbon containing compound was the major byproduct. An increase in the styrene inlet concentration tended to reduce the styrene removal efficiency, it also led to increase in the solid byproduct. The reactors that packed with glass, Al2O3 or Pt–Pd /Al2O3 pellets could improve the styrene decomposition efficiency and reduce the formation of intermediate products, of which the best oxidation of styrene to CO2 could be achieved with a Pt–Pd /Al2O3 packed bed reactor. The carbon byproducts could also be reduced if the rector length was increased. The concentrations of ozone formed during the plasma process were also evaluated for the non-packed and packed bed reactors. The plasma reactor that packed with Pt–Pd /Al2O3 pellets was proved to have the lowest O3 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Lin H. Bai (2001) J. Environ. Eng.-ASCE 127 648 Occurrence Handle2001swfe.book.....L

    ADS  Google Scholar 

  2. M. B. Chang C. C. Chang (1997) AICHE J. 43 1325 Occurrence Handle10.1002/aic.690430521

    Article  Google Scholar 

  3. H. M. Lee M. B. Chang (2003) Plasma Chem. Plasma Process 23 541

    Google Scholar 

  4. U. Kogelschatz (2003) Plasma Chem. Plasma Process. 23 1 Occurrence Handle10.1023/A:1022470901385

    Article  Google Scholar 

  5. A. Ogata K. Miyamae K. Mizuno S. Kushiyama M. Tezuka (2002) Plasma Chem. Plasma Process. 22 537 Occurrence Handle10.1023/A:1021319513117

    Article  Google Scholar 

  6. H. M. Lee M. B. Chang (2001) Plasma Chem. Plasma Process 21 329 Occurrence Handle10.1023/A:1011018325026 Occurrence Handle2002e:11176

    Article  MathSciNet  Google Scholar 

  7. G.K. Anderson H. Snyder J. Coogan (1999) Plasma Chem. Plasma Process 19 131 Occurrence Handle10.1023/A:1021812201545

    Article  Google Scholar 

  8. U. Roland F. Holzer F. D. Kopinke (2002) Catal. Today 73 315 Occurrence Handle10.1016/S0920-5861(02)00015-9

    Article  Google Scholar 

  9. M. A. Malik X. Z. Jiang (1998) J. Environ. Sci. (China) 10 276

    Google Scholar 

  10. H. H. Kim Y. H. Lee A. Ogata S. Futamura (2003) Catal. Commun. 4 347 Occurrence Handle10.1016/S1566-7367(03)00086-4

    Article  Google Scholar 

  11. V. Demidiouk S. I. Moon J. O. Chae (2003) Catal. Commun. 4 51 Occurrence Handle10.1016/S1566-7367(02)00256-X

    Article  Google Scholar 

  12. C. Ayrault J. Barrault N. Blin-Simiand F. Jorand S. Pasquiers A. Rousseau J. M. Tatibouet (2004) Catal. Today 89 75 Occurrence Handle10.1016/j.cattod.2003.11.042

    Article  Google Scholar 

  13. Y.-H. Song S. J. Kim K. I. Choi T. Yamamoto (2002) J. Electrostatics 55 189 Occurrence Handle10.1016/S0304-3886(01)00197-8

    Article  Google Scholar 

  14. A. Ogata K. Mizuno S. Kushiyama T. Yamamoto (1998) Plasma Chem. Plasma Process. 18 363 Occurrence Handle10.1023/A:1021897419040

    Article  Google Scholar 

  15. A. Ogata D. Ito K. Mizuno S. Kushiyama A. Gal T. Yamamoto (2002) Appl. Catal. A. 236 9

    Google Scholar 

  16. S. Futamura A. Zang G. Prieto T. Yamamoto (1998) IEEE Trans. Ind. Appl. 34 967 Occurrence Handle10.1109/28.720436

    Article  Google Scholar 

  17. C. L. Chang T. S. Lin (2005) Plasma Chem. Plasma Process. 25 IssueID3 227 Occurrence Handle10.1007/s11090-004-3034-x Occurrence Handle96j:42002

    Article  MathSciNet  Google Scholar 

  18. http://webbook.nist.gov/chemistry/. NIST Standard Reference Database Number 69. Visited on January 31, 2005.

  19. R. M. Heck R. J. Farrauto H. C. Lee (1992) Catal. Today 13 43 Occurrence Handle10.1016/0920-5861(92)80186-Q

    Article  Google Scholar 

  20. C. L. Chang and T. S. Lin, Plasma Chem. Plasma Process. 25(4), (2005).

  21. P. Hunter S.T. Oyama (2000) Control of Volatile Organic Compound Emissions: Conventional and Emerging Technologies John Wiley & Sons New York 224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Liang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CL., Bai, H. & Lu, SJ. Destruction of Styrene in an Air Stream by Packed Dielectric Barrier Discharge Reactors. Plasma Chem Plasma Process 25, 641–657 (2005). https://doi.org/10.1007/s11090-005-6818-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-005-6818-8

Keywords

Navigation