Skip to main content
Log in

The Chemistry of Methane Remediation by a Non‐thermal Atmospheric Pressure Plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The destruction of methane by a non‐thermal plasma in atmospheric pressure gas streams of nitrogen with variable amounts of added oxygen has been investigated. The identities and concentrations of the end‐products are determined by on‐line FTIR spectroscopy and the plasma chemistry is interpreted using kinetic modelling. For a deposited energy of 118 kJ m−3, the destruction is 12% in nitrogen decreasing monotonically to 5% in air. The major end‐products are HCN and NH3 in nitrogen and CO, CO2, N2O, NO and NO2 for gas streams containing oxygen. The chemistry in pure nitrogen is predominantly due to reactions of electronically‐excited nitrogen atoms, N(2D). The addition of oxygen converts the excited state nitrogen into nitrogen oxides reducing the methane destruction which then arises by O and OH reactions yielding CO and, to a lesser extent, CO2. The modelling correctly predicts the magnitude of the methane destruction as a function of added oxygen and the concentrations of the end‐products for processing in both nitrogen and air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. L. M. Zhou, B. Xue, U. Kogelschatz, and B. Eliasson, Plasma Chem. Plasma Proc. 18, 375 (1998).

    Google Scholar 

  • 2. M. Okumoto, B. S. Rajanianth, S. Katsura, and A. Mizuno, IEEE Trans. Ind. Appl. 34, 940 (1998).

    Google Scholar 

  • 3. M. Okumoto, Z. Su, S. Katsura, and A. Mizuno, IEEE Trans. Ind. Appl. 35, 1205 (1999).

    Google Scholar 

  • 4. S. L. Yao, T. Takemoto, F. Ouyang, A. Nakayama, E. Suzuki, A. Mizuno, and M. Okumoto, Energy Fuels 14, 459 (2000).

    Google Scholar 

  • 5. H. Matsumoto, S. Tanabe, K. Okitsu, Y. Hayashi, and S. L. Suib, J. Phys. Chem. A 105, 5304 (2001).

    Google Scholar 

  • 6. L. Bromberg, D. R. Cohn, A. Rabinovich, C. O’Brien, and S. Hochgreb, Energy Fuels 12, 11 (1998).

    Google Scholar 

  • 7. L. M. Zhou, B. Xue, U. Kogelschatz, and B. Eliasson, Energy Fuels 12, 1191 (1998).

    Google Scholar 

  • 8. B. Eliasson, C. Liu, and U. Kogelschatz, Ind. Eng. Chem. Res. 39, 1221 (2000).

    Google Scholar 

  • 9. M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, Phys. Chem. Chem. Phys. 3, 294 (2001).

    Google Scholar 

  • 10. K. Zhang, U. Kogelschatz, and B. Eliasson, Energy Fuels 15, 395 (2001).

    Google Scholar 

  • 11. S. Kado, Y. Sekine, and K. Fujimoto, Chem. Commun., 2485 (1999).

  • 12. C. Marún, S. L. Suib, M. Dery, J. B. Harrison, and K. Kablaoui, J. Phys. Chem. 100, 17866 (1996).

    Google Scholar 

  • 13. C. Marún, L. D. Conde, and S. L. Suib, J. Phys. Chem. A 103, 4332 (1999).

    Google Scholar 

  • 14. T. Fujii and M. Kareev, J. Appl. Phys. 89, 2543 (2001).

    Google Scholar 

  • 15. D. Liu, T. Ma, S. Yu, Y. Xu, and X. Yang, J. Phys. D: Appl. Phys. 34, 1651 (2001).

    Google Scholar 

  • 16. M. N. R. Ashfold, P. W. May, J. R. Petherbridge, K. N. Rosser, J. A. Smith, Y. A. Mankelevich, and N. V. Suetin, Phys. Chem. Chem. Phys. 3, 3471 (2001).

    Google Scholar 

  • 17. D. E. Tevault, Plasma Chem. Plasma Proc. 5, 369 (1985).

    Google Scholar 

  • 18. C. D. Pintassilgo, J. Loureiro, G. Cernogora, and M. Touzeau, Plasma Sources Sci. Technol. 8, 463 (1999).

    Google Scholar 

  • 19. M. Kareev, M. Sablier, and T. Fujii, J. Phys. Chem. A 104, 7218 (2000).

    Google Scholar 

  • 20. J.-C. Legrand, A.-M. Diamy, R. Hrach, and V. Hrachová, Vacuum 48, 671 (1997).

    Google Scholar 

  • 21. J.-C. Legrand, A.-M. Diamy, R. Hrach, and V. Hrachová, Vacuum 50, 491 (1998).

    Google Scholar 

  • 22. J.-C. Legrand, A.-M. Diamy, R. Hrach, and V. Hrachová, Vacuum 52, 27 (1999).

    Google Scholar 

  • 23. J. Röpcke, L. Mechold, M. Käning, W. Y. Fan, and P. B. Davies, Plasma Chem. Plasma Proc. 19, 395 (1999).

    Google Scholar 

  • 24. W. Y. Fan, P. F. Knewstubb, M. Käning, L. Mechold, J. Röpcke, and P. B. Davies, J. Phys. Chem. A 103, 4118 (1999).

    Google Scholar 

  • 25. A. Ogata, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Proc. 18, 363 (1998).

    Google Scholar 

  • 26. C. Fitzsimmons, F. Ismail, J. C. Whitehead, and J. J. Wilman, J. Phys. Chem. A 104, 6032 (2000).

    Google Scholar 

  • 27. P. L. Hanst and S. T. Hanst, Infrared Spectra for Quantitative Analysis of Gases, Infrared Analysis, Anaheim, CA (1996).

  • 28. T. Yamamoto, J. Haz. Mat. B67, 165 (1999).

    Google Scholar 

  • 29. P. Jemmer, Math. Comp. Mod. 30, 61 (1999).

    Google Scholar 

  • 30. R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratory (1991).

  • 31. A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2074 (1995).

    Google Scholar 

  • 32. A. C. Gentile and M. J. Kushner, J. Appl. Phys. 78, 2977 (1995).

    Google Scholar 

  • 33. W. L. Morgan and B. M. Penetrante, Comp. Phys. Comm. 58, 127 (1990).

    Google Scholar 

  • 34. T. Nakano, H. Toyoda, and H. Sugai, Jap. J. Appl. Phys. 30, 2908 (1991).

    Google Scholar 

  • 35. C. Fitzsimmons, J. T. Shawcross, and J. C. Whitehead, J. Phys. D: Appl. Phys. 32, 1136 (1999).

    Google Scholar 

  • 36. J. Li, W. Sun, B. Pashaie, and S. K. Dhali, IEEE Trans. Plasma Sci. 23, 672 (1995).

    Google Scholar 

  • 37. M. F. Golde, Int. J. Chem. Kin. 20, 75 (1988).

    Google Scholar 

  • 38. K. Schofield, J. Phys. Chem. Ref. Data 8, 723 (1979).

    Google Scholar 

  • 39. G. Marsden, F. L. Nesbitt, D. F. Nava, W. A. Payne, and L. J. Stief, J. Phys. Chem. 93, 5769 (1989).

    Google Scholar 

  • 40. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, IEEE Trans. Ind. Appl. 35, 1289 (1999).

    Google Scholar 

  • 41. W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson, and D. H. Frizzell, NIST Chemical Kinetics Database; Windows Version 2Q98 edition; U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg (1998).

    Google Scholar 

  • 42. H. R. Snyder and G. K. Anderson, IEEE Trans. Plasma Sci. 26, 1695 (1998).

    Google Scholar 

  • 43. A. R. Martin, J. T. Shawcross, and J. C. Whitehead, J. Phys. D: Appl. Phys., 37, 42 (2004).

    Google Scholar 

  • 44. J. Hoard, T. J. Wallington, J. C. Ball, M. D. Hurley, and K. Wodzisz, Env. Sci. Tech. 33, 3427 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pringle, K., Whitehead, J., Wilman, J. et al. The Chemistry of Methane Remediation by a Non‐thermal Atmospheric Pressure Plasma. Plasma Chem Plasma Process 24, 421–434 (2004). https://doi.org/10.1007/s11090-004-2277-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-2277-x

Keywords

Navigation