Skip to main content
Log in

Genomic restructuring in \(\hbox {F}_{1}\) Hordeum chilense \(\times \) durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses

  • Online Resources
  • Published:
Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alvarez J. B., Ballesteros J., Siller J. A. and Martin L. M. 1992 Tritordeum: a new crop of potential importance in the food industry. Hereditas 116, 193–197.

    Article  Google Scholar 

  • Atienza S. G., Ballesteros J., Martín A. and Hornero-Méndez D. 2007 Genetic variability of carotenoid concentration and degree of esterification among tritordeum (x Tritordeum Ascherson et Graebner) and durum wheat accessions. J. Agric. Food Chem. 55, 4244–4251.

    Article  CAS  PubMed  Google Scholar 

  • Bento M., Pereira H. S., Rocheta M., Gustafson P., Viegas W. and Silva M. 2008 Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in Triticale. PLoS One 3, e1402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bento M., Gustafson P., Viegas W. and Silva M. 2010 Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. Theor. Appl. Genet. 121, 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Bento M., Tomás D., Viegas W. and Silva M. 2013 Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species. Cytogenet. Genome Res. 140, 286–294.

    Article  CAS  PubMed  Google Scholar 

  • Cabo S., Carvalho A., Rocha L., Martín A. and Lima-Brito J. 2014a IRAP, REMAP and ISSR fingerprinting in newly formed hexaploid tritordeum (x Tritordeum Ascherson et Graebner). Plant Mol. Biol. Rep. 32, 761–770.

  • Cabo S., Ferreira L., Carvalho A., Martins-Lopes P., Martín A. and Lima-Brito J. 2014b Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and respective parents. J. Appl. Genet. 55, 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Cabo S., Carvalho A., Martín A. and Lima-Brito J. 2014c Structural rearrangements detected in newly-formed hexaploid tritordeum after three sequential FISH experiments with repetitive DNA sequences. J. Genet. 93, 183–188.

    Article  PubMed  Google Scholar 

  • Carvalho A., Guedes-Pinto H., Martins-Lopes P. and Lima-Brito J. 2010 Genetic variability analysis in old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Ann. Appl. Biol. 156, 337–345.

    Article  CAS  Google Scholar 

  • Carvalho A., Guedes-Pinto H. and Lima-Brito J. 2012 Genetic diversity in Old Portuguese durum wheat cultivars assessed by retrotransposon-based markers. Plant Mol. Biol. Rep. 30, 578–589.

    Article  Google Scholar 

  • Castilho A., Ramírez M. C., Martín A. C., Kilian A., Martín A. and Atienza S. G. 2013 High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT). BMC Plant Biol13, 87.

    Article  Google Scholar 

  • Chen L., Lou Q., Zhuang Y., Chen J., Zhang X. and Wolukau J. N. 2007 Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus. Planta 225, 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Comai L. 2000 Genetic and epigenetic interactions in allopolyploid plants. Plant Mol. Biol. 43, 387–399.

    Article  CAS  PubMed  Google Scholar 

  • Comai L., Tyagi A. P., Winter K., Holmes-Davis R., Reynolds S. H., Stevens Y. and Byers B. 2000 Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12, 1551–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle J. J. and Doyle J. L. 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

    Google Scholar 

  • Feldman M., Liu B., Segal G., Abbo S., Levy A. A. and Vega J. M. 1997 Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics 147, 1381–1387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach W. L. and Bedbrook J. R. 1979 Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havecker E. R., Gao X. and Voytas D. F. 2004 The diversity of LTR retrotransposons. Genome. Biol. 5, 225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang B., Lou Q., Wu Z., Zhang W., Wang D., Mbira K. G. et al. 2011 Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis x hyvitus. Plant Mol. Biol. 77, 225–233.

    Article  PubMed  Google Scholar 

  • Kalendar R., Grob T., Regina M., Suoniemi A. and Schulman A. 1999 IRAP and REMAP: two retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711.

    Article  CAS  Google Scholar 

  • Kalendar R., Tanskanen J., Chang W., Antonius K., Sela H., Peleg O. et al. 2008 Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. USA 105, 5833–5838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalendar R., Antonius K., Smýkal P., and Schulman A. H. 2010 iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet. 121, 1419–1430.

    Article  CAS  PubMed  Google Scholar 

  • Kashkush K., Feldman M. and Levy A. A. 2002 Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch I. J. and Bennett M. D. 1997 Polyploidy in angiosperms. Trends Plant Sci. 2, 470–476.

    Article  Google Scholar 

  • Lima-Brito J., Guedes-Pinto H., Harrison G. E. and Heslop-Harrison J. S. 1997 Molecular cytogenetic analysis of durum wheat x tritordeum hybrids. Genome 40, 362–369.

    Article  CAS  PubMed  Google Scholar 

  • Lima-Brito J., Guedes-Pinto H. and Heslop-Harrison J. S. 1998 The activity of nucleolar organizing chromosomes in multigeneric \(\text{ F }_{1}\) hybrids involving wheat, triticale, and tritordeum. Genome 41, 763–768.

    Article  Google Scholar 

  • Liu B., Vega J. M., Segal G., Abbo S., Rodova M. and Feldman M. 1998 Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy non-coding DNA sequences. Genome 41, 272–277.

    Article  CAS  Google Scholar 

  • Marín S., Martín A. and Barro F. 2008 Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.). Genome 51, 580–588.

    Article  PubMed  Google Scholar 

  • Martín A. and Sánchez-Monge Laguna E. 1982 Cytology and morphology of the amphiploid Hordeum chilense x Triticum turgidum conv. durum. Euphytica 31, 262–267.

    Article  Google Scholar 

  • Martín A., Álvarez J. B., Martín L. M., Barro F. and Ballesteros J. 1999 The development of tritordeum: a novel cereal for food processing. J. Cereal Sci. 30, 85–95.

    Article  Google Scholar 

  • Matsuoka Y., Takumi S. and Nasuda S. 2014 Genetic mechanisms of Allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies. In International review of cell and molecular biology (ed. K. W. Jeon), pp. 199–258. Academic Press, Burlington, Canada.

    Google Scholar 

  • Matzke M. A. and Matzke A. J. M. 1998 Polyploidy and transposons. Trends Ecol. Evol. 13, 241.

    Article  CAS  PubMed  Google Scholar 

  • Mellado-Ortega E. and Hornero-Méndez D. 2012 Isolation and identification of lutein esters, including their regioisomers, in tritordeum (x Tritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity. Food Chem. 135, 1344–1352.

  • Navas-Lopez J. F., Ostos-Garrido F. J., Castilho A., Martín A., Gimenez M. J. and Pistón F. 2014 Phenolic content variability and its chromosome location in tritordeum. Front. Plant Sci. 5, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozkan H., Levy A. A. and Feldman M. 2001 Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13, 1735–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkan H., Tuna M. and Arumuganathan K. 2003 Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J. Hered. 94, 260–264.

    Article  CAS  PubMed  Google Scholar 

  • Petit M., Guidat C., Daniel J., Denis E., Montoriol E., Bui Q. T. et al. 2010 Mobilization of retrotransposons in synthetic allotetraploid tobacco.New Phytol. 186, 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Poczai P., Varga I., Laos M., Cseh A., Bell N., Valkonen J. P. T. et al. 2013 Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 6.

  • Prieto P., Martín A. and Cabrera A. 2004 Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Hereditas 141, 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Salina E. A., Ozkan H., Feldman M. and Shumny V. K. 2000 Subtelomeric repeat reorganization in synthesized amphiploids of wheat. In Proceedings of the International Conference of Biodiversity and Dynamics of Systems in North Eurasia, pp. 102–105. Russia.

  • Scheid O. M., Jakovleva L., Afsar K., Maluszynska J. and Paszkowski J. 1996 A change in ploidy can modify epigenetic silencing. Proc. Natl. Acad. Sci. USA 93, 7114–7119.

    Article  Google Scholar 

  • Schwarzacher T. and Heslop-Harrison J. S. 2000 Practical in situ hybridization. BIOS Scientific Publishers Limited, Oxford, UK.

    Google Scholar 

  • Shaked H., Kashkush K., Ozkan H., Feldman M. and Levy A. A. 2001 Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13, 1749–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song K. M., Lu P., Tang K. L. and Osborn T. C. 1995 Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. USA 92, 7719–7723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins G. L. 1971 Chromosomal evolution in higher plants. Addison-Wesley, New York, USA.

    Google Scholar 

  • Teo C. H., Tan S. H., Ho C. L., Faridah Q. Z., Othman Y. R., Heslop-Harrison J. S. et al. 2005 Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. J. Plant Biol. 48, 96–105.

    Article  CAS  Google Scholar 

  • Wegscheider E., Benjak A. and Forneck A. 2009 Clonal variation in Pinot noir revealed by S-SAP involving universal retrotransposon-based sequences. Am. J. Enol. Vitic. 60, 104–109.

    CAS  Google Scholar 

  • Wendel J. F. 2000 Genome evolution in polyploids. Plant Mol. Biol. 42, 225–249.

    Article  CAS  PubMed  Google Scholar 

  • Wendel J. F., Schnabel A. and Seelanam T. 1995 Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92, 280–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the International Consortium HY-WHEAT (P-KBBE/AGRGPL/0002/2010), supported by the Portuguese Foundation for Science and the Technology (‘Fundação para a Ciência e a Tecnologia’, FCT), ‘Programa Operacional de Factores Competitividade’ (COMPETE), ‘Quadro de Referência Estratégico Nacional 2007-2013’ (QREN) and ‘Fundo Europeu de Desenvolvimento Regional’ (FEDER) of European Union; and by the project AGL2013-43329-R supported by ‘Ministerio de Economía y Competitividad’ of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Lima-Brito.

Additional information

[Delgado A., Carvalho A., Martín A. C., Martín A. and Lima-Brito J. 2017 Genomic restructuring in F1 Hordeum chilense × durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses. J. Genet. 96, e13–e24. Online only: http://www.ias.ac.in/jgenet/OnlineResources/96/e13.pdf]

Corresponding editor: Arun Joshi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, A., Carvalho, A., Martín, A.C. et al. Genomic restructuring in \(\hbox {F}_{1}\) Hordeum chilense \(\times \) durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses. J Genet 96 (Suppl 1), 13–23 (2017). https://doi.org/10.1007/s12041-017-0772-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0772-0

Keywords

Navigation