Skip to main content
Log in

Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis × hytivus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We used a newly synthesized allotetraploid between C. sativus (2n = 2x = 14, n gametic chromosome number, x haploid chromosome number) and C. hystrix (2n = 2x = 24) to study the genomic events in its early generations. Results from cytological characterization of the F1 and the allotetraploid progenies showed that the rate of bivalents in meiotic metaphase I of the F1 was greatly improved by chromosome doubling, and further improved during the selfing process of allopolyploid resulting into relatively diploid-like meiosis. Extensive genomic changes were detected by amplified fragment length polymorphism analysis. The changes mainly involved loss of parental restriction fragments and gaining of novel fragments. The total detectable changes were from 11.1 to 32.1%, and the frequency of losing parental fragments was much higher than that of gaining novel fragments. Some of the changes were initiated as early as in the F1 hybrid, whereas others occurred after chromosome doubling (polyploid formation). No significant differences were detected in the reciprocal F1 hybrids and S0 generations. But the data showed that the frequency of sequence losing in C. sativus was about two times higher than in the C. hystrix. Our results demonstrated that the sequence elimination was the major event of genomic changes, and it might provide the physical basis for the diploid-like meiotic behavior in the diploidization of the newly formed allopolyploids. Moreover, the results suggest that the sequence elimination was not caused by cytoplasmic factors, and might relate to genomic recombination and to the numbers of parental chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

A I:

Anaphase I

CTAB:

Cetyltrimethylammonium bromide

M I:

Metaphase I

MSAP:

Methylation-sensitive amplification polymorphism

PCR:

Polymerase chain reaction

PMC:

Pollen mother cell

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Axesson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688

    Article  Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    PubMed  CAS  Google Scholar 

  • Bennett ST, Kenton AY, Bennett MD (1992) Genomic in situ hybridization reveals the allopolyploid nature of Millium mantianum (Gramineae). Chromosoma 101:420–424

    Article  Google Scholar 

  • Chen JF, Kirkbride JJr (2000) A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319

    Article  Google Scholar 

  • Chen JF, Isshiki S, Tashiro Y, Miyazaki S (1995) Studies on a wild cucumber from China (Cucumis hystrix Chakr.).I.Genetic distances C. hysrtix and two cultivated Cucumis species(C. sativus L. and C. melo L.) based on isozyme analysis. J Jpn Soc Hort Sci 64(suppl. 2):264–265

    Google Scholar 

  • Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S (1997) Successful interspecific hybridization between Cucumis sativus L. and Cucumis hystrix Chakr. Euphytica 96:413–419

    Article  Google Scholar 

  • Chen JF, Staub JE, Jiang JM (1998) A reevaluation of karyotype in cucumber (Cucumis sativus L.). Genet Resour Crop Evol 45:301–305

    Article  Google Scholar 

  • Chen JF, Staub JE, Adelberg J, Lewis S, Kunlle B (2002) Synthesis and preliminary characterization of a new species (Amphidiploid) in Cucumis. Euphytica 123:315–322

    Article  Google Scholar 

  • Chen JF, Staub J, Qian CH, Luo XD, Zhuang FY (2003) Reproduction and cytogenetic characterization of interspecific hybrids from Cucumis hystix chakr. × C. sativus L. Theor Appl Genet 106:688–695

    PubMed  CAS  Google Scholar 

  • Chen JF, Luo XD, Qian CH, Molly MJ, Staub J, Zhuang FY, Lou QF, Ren G (2004) Cucumis monosomic alien addition lines: morphological, cytological, and genotypic analyses. Theor Appl Genet 108:1343–1348

    Article  PubMed  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploidy plants. Plant Mol Biol 43:387–399

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y. Byer B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allopolyploids. Plant Cell 12:1551–1567

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Tyagi AP, Lysak MA (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11:217–226

    Article  PubMed  CAS  Google Scholar 

  • Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequence sheds light on the phylogeny of the wheat B and G genome. Proc Natl Acad Sci USA 87:9640–9644

    Article  PubMed  CAS  Google Scholar 

  • Eckert KA, Mowery A, Hile SE (2002) Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite frame-shift error rates using a forward mutation assay. Biochemistry 41:10490–10498

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy–a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Liu B, Sehgal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low copy DNA sequence in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    PubMed  CAS  Google Scholar 

  • Helentjaris T, Weber D, Wright S (1988) Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118:353–363

    PubMed  CAS  Google Scholar 

  • Kirkbride J Jr (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone, pp 84–88

    Google Scholar 

  • Lee HS, Chen ZJ (2000) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753–6758

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Liu B, Wendel JF (2002) Non-mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–505

    Article  CAS  Google Scholar 

  • Liu B, Segal G, Vega JM (1997) Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J 11:959

    Article  CAS  Google Scholar 

  • Liu B, Vega MJ, Feldman M (1998a) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops II. Changes in low-copy coding DNA sequences. Genome 41:535–542

    Article  CAS  Google Scholar 

  • Liu B, Vega MJ, Segal G, Abbo S, Rodova M, Feldman M (1998b) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277

    Article  CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:1–3

    Article  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allopolyploids. Plant Physiol 129:733–746

    Article  PubMed  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  Google Scholar 

  • McGire PE, Dvorak J (1982) Genetic regulation of heterogenetic chromosome paring in polyploid species of the genus Triticum Sensu lato. Can J Genet Cytol 24:57–82

    Google Scholar 

  • Moore G (2002) Meiosis in allopolyploids the importance of “Teflon” chromosomes. Trends Genet 18:456–463

    Article  PubMed  CAS  Google Scholar 

  • Murray HG, Thompson WF (1980) Rapid isolation of higher weight DNA. Nucleic Acids Res 8:4321

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H (2000) Genomic changes in newly synthesized amphiploids of Aegilops and Triticum. Ph.D. Thesis University of Cukurova

  • Ozkan H, Levy A, Feldman M (2001) Allopolyploid-induced rapid genomic evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Panaud O, Chen X, McCouch SD (1996) Development of microsatellite markers and characterization of sample sequence lengthen polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    PubMed  CAS  Google Scholar 

  • Richard GF, Paques F (2000) Mini- and microsatellite expansions: the recombination connection. EMBO Rep 1:122–126

    Article  PubMed  CAS  Google Scholar 

  • Shaked H, Kashkush K, Ozakan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genome. Proc Natl Acad Sci USA 92:8089–8091

    Article  PubMed  CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, New York

    Google Scholar 

  • Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410

    CAS  Google Scholar 

  • Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hem-leben V (1999) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol Biol Evol 16:311–320

    PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reljans M, Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    PubMed  CAS  Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the General Program 30470120 from the National Natural Science Foundation of China, by the 863 Program 2004AA241120 from the Ministry of Science and Technology of China, and by the Ph.D Funding from the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Lou, Q., Zhuang, Y. et al. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis × hytivus . Planta 225, 603–614 (2007). https://doi.org/10.1007/s00425-006-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0381-2

Keywords

Navigation