Skip to main content
Log in

Genome constitution and classification using retrotransposon-based markers in the orphan crop banana

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We have exploited the repetitive and dispersed nature of many long terminal repeat (LTR)-retrotransposon families for characterizing genome constitutions and classifying cultivars of the genusMusa. Insertional polymorphisms of the elements were studied using seven published and two newly designed primers facing outwards from the LTRs and reverse transcriptase (RT) domain of the retrotransposon. The primers generated specific amplification patterns showing the universal applicability of this marker type. The Inter-Retrotransposon Amplified Polymorphism (IRAP) markers distinguished the A and B genomes of the banana species (Musa acuminata Col la andMusa balbisiana Colla) and between banana cultivars. The IRAP markers enabled phylogenetic analysis of 16 Malaysian banana cultivars and determination of the genome constitution of hybrid banana (AAB, ABB, AABB, and AAAB), and gave information about ancestral genotypes of the hybrids. In addition, the IRAP detected new retrotransposon insertions into the genome of tissue culture regenerants. This PCR-based IRAP assay is amenable to large-scale throughput demands in screening breeding populations and is applicable for any crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Inter-retrotransposon amplified polymorphism (IRAP), and retotransposon-microsatellite amplified polymorphism (REMAP) in populations of the young allopolyploid speciesSpartina angelica Hubbard (Poaceae). Mol Biol Evol 19: 1218–1227

    PubMed  CAS  Google Scholar 

  • Boyko E, Kalendar R, Korzun V, Gill B, Schulman AH (2002) Combined mapping ofAegilops tauschii by ret-rotransposon, microsatellite, and gene markers. Plant Mol Biol 48: 767–790

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992)Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl Acids Res 20: 3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Ret-rotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16: 643–650

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989)Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12: 2521–2528

    PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Horry JP, Ortiz R, Arnaud E, Crouch JH, Ferris RSB, Jones DR, Mateo N, Picq C, Vuylsteke (1997) Banana and plantain.In D Fuccillo, L Sears, P Stapleton, eds, Biodiversity in Trust. (Conservation and Use of Plane Genetic Resources in CGIAR Centres), Cambridge University, London, pp 67–81

    Google Scholar 

  • Iwamoto M, Nagashima H, Nagamine T, Higo T, Higo K (1999)p-SINE1-like intron of theCatA catalase homologs and phylogenetic relationships among AA-genomeOryza and related species. Theor Appl Genet 98: 853–861

    Article  CAS  Google Scholar 

  • Kalendar R, Grab T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98: 704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) byBARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97: 6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen J (1999) Plant retrotransposons. Ann Rev Genet 33: 479–532

    Article  PubMed  CAS  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application ofBARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264: 325–334

    Article  PubMed  CAS  Google Scholar 

  • Nakayashiki H, Ikeda K, Hashimota Y, Tosa Y, Mayama S (2001) Methylation is not the main force repressing the retrotransposon MAGGY inMagnaporthe grisea. Nucl Acids Res 29: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) TheTy1-copia group of retrotrans-posons inVicia species: Copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 205: 305–315

    Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity inPisum. Mol Gen Genet 263: 898–907

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19: 711–717

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666–670

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10: 908–915

    Article  PubMed  CAS  Google Scholar 

  • Stover P, Simmonds NW (1987) Bananas, Ed 3. Longman, London

    Google Scholar 

  • Tatout C, Warwick S, Lenoir A, Deragon JM (1999) Sine insertions as clade markers for wildCrucifer species. Mol Biol Evol 16: 1614–1621

    CAS  Google Scholar 

  • Teo CH, Tan SH, Othman YR, Schwarzacher T (2002) The cloning of Ty1-copia-like retrotransposons from 10 varieties of banana (Musa sp.). J Biochem Mol Biol Biophys 6: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Jaaskelainen M, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125: 1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Schulman AH (2002) Copia-like retrotransposons in the rice genome: few and assorted. Genome Lett 1: 35–47

    Article  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny AK, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution ofBARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253: 687–694

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siang Hee Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, C.H., Tan, S.H., Ho, C.L. et al. Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. J. Plant Biol. 48, 96–105 (2005). https://doi.org/10.1007/BF03030568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030568

Keywords

Navigation