Skip to main content
Log in

Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The impact is one of the most abundant phenomena in the field of multi-body dynamics when two or more bodies come in close vicinity and depending on the interaction properties and geometry, all the interacting bodies experience certain impulsive force for an infinitesimal duration. Nowadays, impact modelling becomes an intrinsic part in the modelling of structural pounding, granular materials, crash and machinery analysis, robotics and bio-mechatronics applications. Since the time of Newton, numerous literatures have been published on the modelling of both normal and oblique contact phenomena. The scope of this critical review is limited to consolidate the existing knowledge on the computational model of normal directional impact on rigid bodies. The literature related to modelling of oblique impact, soft body impact, impact damage in composites and associated stress wave propagation are excluded from the scope of this critical review. Smooth and non-smooth mechanics are two schools of thought in simulating the normal directional impact. In this review, the shortcomings of all the classes of compliance and non-smooth models are analysed in the unified dimensionless frame-work to compare their response output with the conventional stereo-mechanical model. This review opens a new avenue for future researchers in selecting a proper contact formulation for specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

K :

Stiffness of the linear spring

M :

Mass of the impact

δ, δ P , δ max, x :

Relative indentation, plastic deformation, and maximum penetration, dimensionless penetration

R i , ΔR, L :

Radius of impacting solids, radial clearance, length of cylinder joint

ν :

Poisson’s ratio

E :

Young’s modulus

F, F max, \( \tilde{F} \) :

Restoring force and the maximum possible force, dimensionless force

A :

Impacting area

ξ, C :

Damping ratio, coefficient of damping

t h :

Thickness of the spur gears

\( \dot{\delta }_{N}^{ - } ,\dot{\delta }_{N}^{ + } ,\dot{\delta },\dot{x} \) :

Pre-impact relative velocity, post-impact relative velocity, velocity during virtual penetration, dimensionless velocity during virtual penetration

ɛ N :

Coefficient of restitution

\( \Lambda _{N} ,{\tilde{\Lambda }}_{N} {,\Lambda }_{NC} ,\Lambda _{NE} \) :

Impulse, dimensionless impulse, impulse in compression phase and impulse in restitution phase

\( \Phi ^{ + } ,\Phi ^{ - } ,\Xi ,{\tilde{\Xi }} \) :

Kinetic energy of pre-impact, post-impact, energy loss, and no dimensional energy loss

\( t,\Delta T, \tau \) :

Time, total time for contact duration, non-dimensional time

References

  1. Flores P et al (2008) Kinematics and dynamics of multibody systems with imperfect joints: models and case studies, vol 34. Springer, Berlin

    MATH  Google Scholar 

  2. Nikravesh PE (2008) Newtonian-based methodologies in multi-body dynamics. Proc Inst Mech Eng Part K J Multi-body Dyn 222(4):277–288

    Google Scholar 

  3. Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice-Hall, Inc, Upper Saddle River

    Google Scholar 

  4. Ambrósio J, Verissimo P (2009) Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst Dyn 22(4):341–365

    Article  MATH  Google Scholar 

  5. Flores P (2009) Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech Mach Theory 44(6):1211–1222

    Article  MATH  Google Scholar 

  6. Machado M et al (2010) Development of a planar multibody model of the human knee joint. Nonlinear Dyn 60(3):459–478

    Article  MATH  Google Scholar 

  7. Alves J et al (2015) A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech Mach Theory 85:172–188

    Article  Google Scholar 

  8. Bhalerao K, Anderson K (2010) Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn 60(1–2):63–79

    Article  MATH  Google Scholar 

  9. Choi J et al (2010) An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst Dyn 23(1):99–120

    Article  MATH  Google Scholar 

  10. Ebrahimi S, Hippmann G, Eberhard P (2005) Extension of the polygonal contact model for flexible multibody systems. Int J Appl Math and Mech 1(1):33–50

    Google Scholar 

  11. Flores P, Leine R, Glocker C (2012) Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn 69(4):2117–2133

    Article  MathSciNet  Google Scholar 

  12. Hirschkorn M, McPhee J, Birkett S (2005) Dynamic modeling and experimental testing of a piano action mechanism. J Comput Nonlinear Dyn 1(1):47–55

    Article  Google Scholar 

  13. Minamoto H, Kawamura S (2011) Moderately high speed impact of two identical spheres. Int J Impact Eng 38(2–3):123–129

    Article  Google Scholar 

  14. Dimitrakopoulos E (2010) Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn 60(4):575–595

    Article  MATH  Google Scholar 

  15. Dimitrakopoulos E, Kappos AJ, Makris N (2009) Dimensional analysis of yielding and pounding structures for records without distinct pulses. Soil Dyn Earthq Eng 29(7):1170–1180

    Article  Google Scholar 

  16. Dimitrakopoulos E, Makris N, Kappos A (2010) dimensional analysis of the earthquake response of a pounding oscillator. J Eng Mech 136(3):299–310

    Article  Google Scholar 

  17. Dimitrakopoulos E, Makris N, Kappos AJ (2009) Dimensional analysis of the earthquake-induced pounding between adjacent structures. Earthq Eng Struct Dyn 38(7):867–886

    Article  Google Scholar 

  18. Dimitrakopoulos EG (2013) Nonsmooth analysis of the impact between successive skew bridge-segments. Nonlinear Dyn 74(4):911–928

    Article  MathSciNet  Google Scholar 

  19. Julian FDR, Hayashikawa T, Obata T (2007) Seismic performance of isolated curved steel viaducts equipped with deck unseating prevention cable restrainers. J Constr Steel Res 63(2):237–253

    Article  Google Scholar 

  20. Anagnostopoulos SA (1988) Pounding of buildings in series during earthquakes. Earthq Eng Struct Dyn 16(3):443–456

    Article  Google Scholar 

  21. Anagnostopoulos SA, Spiliopoulos KV (1992) An investigation of earthquake induced pounding between adjacent buildings. Earthq Eng Struct Dyn 21(4):289–302

    Article  Google Scholar 

  22. Cole G et al (2010) Interbuilding pounding damage observed in the 2010 Darfield earthquake. Bull N Z Soc Earthq Eng 43(4):382

    MathSciNet  Google Scholar 

  23. Cole GL (2012) The effects of detailed analysis on the prediction of seismic building ounding performance in Civil Engineering. University of Canterbury, Canterbury

    Google Scholar 

  24. Cole GL, Dhakal RP, Turner FM (2012) Building pounding damage observed in the 2011 Christchurch earthquake. Earthq Eng Struct Dyn 41(5):893–913

    Article  Google Scholar 

  25. Fleischmann J (2015) DEM-PM contact model with multi-step tangential contact displacement history. Simulation-Based Engineering Laboratory, University of Wisconsin-Madison, Madison

    Google Scholar 

  26. Mishra BK (2003) A review of computer simulation of tumbling mills by the discrete element method: part II—practical applications. Int J Miner Process 71(1–4):95–112

    Article  Google Scholar 

  27. Williams JR, O’Connor R (1999) Discrete element simulation and the contact problem. Arch Comput Methods Eng 6(4):279–304

    Article  MathSciNet  Google Scholar 

  28. Beheshti HK, Lankarani HM (2006) A simplified test methodology for crashworthiness evaluation of aircraft seat cushions. Int J Crashworthiness 11(1):27–35

    Article  Google Scholar 

  29. Carvalho M, Ambrosio J (2011) Development of generic road vehicle multibody models for crash analysis using an optimisation approach. Int J Crashworthiness 16(5):537–556

    Article  Google Scholar 

  30. Sousa L, Veríssimo P, Ambrósio J (2008) Development of generic multibody road vehicle models for crashworthiness. Multibody Syst Dyn 19(1–2):133–158

    Article  MATH  Google Scholar 

  31. Erkaya S, Uzmay İ (2008) A neural–genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst Dyn 20(1):69–83

    Article  MathSciNet  MATH  Google Scholar 

  32. Flores P, Lankarani H (2010) Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn 60(1–2):99–114

    Article  MATH  Google Scholar 

  33. Xu L-X et al (2012) Modeling and analysis of planar multibody systems containing deep groove ball bearing with clearance. Mech Mach Theory 56:69–88

    Article  Google Scholar 

  34. Izadbakhsh A, McPhee J, Birkett S (2008) Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank. J Comput Nonlinear Dyn 3(3):031004

    Article  Google Scholar 

  35. Hegazy S, Rahnejat H, Hussain K (2000) Multi-body dynamics in full-vehicle handling analysis under transient manoeuvre. Veh Syst Dyn 34(1):1–24

    Article  Google Scholar 

  36. Iwnicki S (2006) Handbook of railway vehicle dynamics. CRC Press, Boca Raton

    Book  Google Scholar 

  37. Jalili MM, Salehi H (2011) Wheel/rail contact model for rail vehicle dynamics. C R Mécanique 339(11):700–707

    Article  Google Scholar 

  38. Mermertas V (1998) Dynamic interaction between the vehicle and simply supported curved bridge deck. Comput Methods Appl Mech Eng 162(1):125–131

    Article  MATH  Google Scholar 

  39. Rubinstein D, Hitron R (2004) A detailed multi-body model for dynamic simulation of off-road tracked vehicles. J Terrramech 41(2–3):163–173

    Article  Google Scholar 

  40. Shabana A, Sany J (2001) A survey of rail vehicle track simulations and flexible multibody dynamics. Nonlinear Dyn 26(2):179–212

    Article  MATH  Google Scholar 

  41. Vollebregt E, Segal G (2014) Solving conformal wheel–rail rolling contact problems. Vehicle System Dynamics 52(sup1):455–468

    Article  Google Scholar 

  42. Weidemann C (2010) State-of-the-art railway vehicle design with multi-body simulation. J Mech Syst Transp Logist 3(1):12–26

    Article  Google Scholar 

  43. Yang YB, Yau J (1997) Vehicle-bridge interaction element for dynamic analysis. J Struct Eng 123(11):1512–1518

    Article  Google Scholar 

  44. Yang YB, Lin CW (2005) Vehicle–bridge interaction dynamics and potential applications. J Sound Vib 284(1–2):205–226

    Article  Google Scholar 

  45. Bi SS, Zhou XD, Marghitu DB (2012) Impact modelling and analysis of the compliant legged robots. Proc Inst Mech Eng Part K J Multi-body Dyn 226(2):85–94

    Google Scholar 

  46. Marhefka DW, Orin DE (1999) A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans Syst Man Cybern Part A Syst Hum 29(6):566–572

    Article  Google Scholar 

  47. Verscheure D et al (2010) Identification of contact parameters from stiff multi-point contact robotic operations. Int J Robot Res 29(4):367–385

    Article  Google Scholar 

  48. Argatov I (2012) Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint. Multibody Syst Dyn 28(1–2):3–20

    Article  MathSciNet  MATH  Google Scholar 

  49. Argatov I, Mishuris G (2015) Articular contact mechanics. In: Contact mechanics of articular cartilage layers. Springer: Berlin, pp 229–259

  50. Askari E et al (2014) Study of the friction-induced vibration and contact mechanics of artificial hip joints. Tribol Int 70:1–10

    Article  Google Scholar 

  51. Morales-Orcajo E, Bayod J, Barbosa de Las Casas E (2015) Computational foot modeling: scope and applications. Arch Comput Methods Eng. doi:10.1007/s11831-015-9146-z

  52. Silva P, Silva M, Martins J (2010) Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Syst Dyn 24(3):367–388

    Article  MATH  Google Scholar 

  53. Das R, Cleary PW (2010) Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics. Theor Appl Fract Mech 53(1):47–60

    Article  Google Scholar 

  54. Das R, Cleary PW (2008) Modelling 3D fracture and fragmentation in a thin plate under high velocity projectile impact using SPH. In: 3rd SPHERIC workshop. Lausanne, Switzerland

  55. Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  56. Das R, Cleary PW (2008) Modelling brittle fracture and fragmentation of a column during projectile impact using a mesh-free method. In: 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries. Trondheim, Norway

  57. Das R, Rao S, Lin RJT (2013) Impact behaviour of elastomer based fibre metal laminates. In: Proceedings of the 19th International Conference on Composite Materials (ICCM19). Montreal, Canada

  58. Shaw MC, Das R, Chanda A (2016) 3.11 damage tolerance, reliability and fracture characteristics of multilayered engineering composites. In: Reference Module in Materials Science and Materials Engineering. Elsevier: New York

  59. Dopico D et al (2011) Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst Dyn 25(2):167–183

    Article  MathSciNet  Google Scholar 

  60. Gonzalez-Perez I, Iserte JL, Fuentes A (2011) Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact. Mech Mach Theory 46(6):765–783

    Article  MATH  Google Scholar 

  61. Pham H-T, Wang D-A (2011) A constant-force bistable mechanism for force regulation and overload protection. Mech Mach Theory 46(7):899–909

    Article  MATH  Google Scholar 

  62. Zhu S, Zwiebel S, Bernhardt G (1999) A theoretical formula for calculating damping in the impact of two bodies in a multibody system. Proc Inst Mech Eng Part C J Mech Eng Sci 213(3):211–216

    Article  Google Scholar 

  63. Machado M et al (2012) Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech Mach Theory 53:99–121

    Article  Google Scholar 

  64. Dietl P, Wensing J, Van Nijen G (2000) Rolling bearing damping for dynamic analysis of multi-body systems—experimental and theoretical results. Proc Inst Mech Eng Part K J Multi-body Dyn 214(1):33–43

    Google Scholar 

  65. Hunt KH, Crossley FRE (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 42(2):440–445

    Article  Google Scholar 

  66. Moreira P, Flores , Silva M (2012) A biomechanical multibody foot model for forward dynamic analysis. In: Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting, IEEE

  67. Hertz H (1882) Über die Berührung fester elastischer Körper. Journal f¨ur die Reine und Angewandte Mathematik 29:156–171

    Google Scholar 

  68. Hertz H (1881) On the contact of elastic solids. J Reine Angew Math 92(156–171):110

    Google Scholar 

  69. Inc A (2007) ANSYS Theory Manual, Release 11

  70. ABAQUS U (2001) User’s and Theory Manuals. HKS Inc.: Pawtuchet, US

  71. Manual AUS (2007) Version 6.7. Hibbit, Karlsson & Sorensen

  72. Wriggers P, Laursen TA (2006) Computational contact mechanics, vol 30167. Springer, Berlin

    Book  MATH  Google Scholar 

  73. Flores P et al (2007) Dynamic behaviour of planar rigid multi-body systems including revolute joints with clearance. Proc Inst Mech Eng Part K J Multi-body Dyn 221(2):161–174

    Article  Google Scholar 

  74. Pereira MS, Nikravesh P (1996) Impact dynamics of multibody systems with frictional contact using joint coordinates and canonical equations of motion. Nonlinear Dyn 9(1–2):53–71

    Article  MathSciNet  Google Scholar 

  75. Mahmoud S, Jankowski R (2011) Modified linear viscoelastic model of earthquake-induced structural pounding. Iran J Sci Technol 35:51–62

    Google Scholar 

  76. Shivaswamy S, Lankarani HM (1997) Impact analysis of plates using quasi-static approach. J Mech Des 119(3):376–381

    Article  Google Scholar 

  77. Flores P, Ambrósio J (2010) On the contact detection for contact-impact analysis in multibody systems. Multibody Syst Dyn 24(1):103–122

    Article  MathSciNet  MATH  Google Scholar 

  78. Greenwood DT (1988) Principles of dynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  79. Lankarani H, Nikravesh P (1988) Application of the canonical equations of motion in problems of constrained multibody systems with intermittent motion. Adv Des Autom 1:417–423

    Google Scholar 

  80. Shabana AA (2013) Dynamics of multibody systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  81. van Mier JG et al (1991) Load-time response of colliding concrete bodies. J Struct Eng 117(2):354–374

    Article  Google Scholar 

  82. Goldsmith W (2001) Impact. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  83. Stronge WJ (2004) Impact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  84. Zhang X, Vu-Quoc L (2002) Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions. Int J Impact Eng 27(3):317–341

    Article  Google Scholar 

  85. Jackson RL, Green I, Marghitu DB (2010) Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn 60(3):217–229

    Article  MATH  Google Scholar 

  86. Lee TW, Wang AC (1983) On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response. J Mech Transm Autom Des 105(3):534–540

    Article  Google Scholar 

  87. Najafabadi SAM, Kövecses J, Angeles J (2008) Generalization of the energetic coefficient of restitution for contacts in multibody systems. J Comput Nonlinear Dyn 3(4):041008

    Article  Google Scholar 

  88. Seifried R, Schiehlen W, Eberhard P (2010) The role of the coefficient of restitution on impact problems in multi-body dynamics. Proc Inst Mech Eng Part K J Multi-body Dyn 224(3):279–306

    Article  Google Scholar 

  89. Zhang Y, Sharf I (2009) Validation of nonlinear viscoelastic contact force models for low speed impact. J Appl Mech 76(5):051002

    Article  Google Scholar 

  90. Glocker C (2001) On frictionless impact models in rigid-body systems. Philos Trans R Soc Lond A Math Phys Eng Sci 359(1789):2385–2404

    Article  MathSciNet  MATH  Google Scholar 

  91. Glocker C (2001) Set-valued force laws: dynamics of non-smooth systems, vol 1. Springer, Berlin

    Book  MATH  Google Scholar 

  92. Atkinson KE (2008) An introduction to numerical analysis. Wiley, New York

    Google Scholar 

  93. Gilardi G, Sharf I (2002) Literature survey of contact dynamics modelling. Mech Mach Theory 37(10):1213–1239

    Article  MathSciNet  MATH  Google Scholar 

  94. Glocker C (2004) Concepts for modeling impacts without friction. Acta Mech 168(1–2):1–19

    Article  MATH  Google Scholar 

  95. Hippmann G (2004) An algorithm for compliant contact between complexly shaped bodies. Multibody Syst Dyn 12(4):345–362

    Article  MathSciNet  MATH  Google Scholar 

  96. Lopes DS et al (2010) A mathematical framework for rigid contact detection between quadric and superquadric surfaces. Multibody Syst Dyn 24(3):255–280

    Article  MathSciNet  MATH  Google Scholar 

  97. Flores P, Ambrósio J (2004) Revolute joints with clearance in multibody systems. Comput Struct 82(17–19):1359–1369

    Article  Google Scholar 

  98. Flores P, Leine R, Glocker C (2011) Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. In: Arczewski K et al (eds) Multibody dynamics. Springer, Netherlands, pp 107–130

    Chapter  Google Scholar 

  99. Johnson K (1982) One hundred years of Hertz contact. Proc Inst Mech Eng 196(1):363–378

    Article  Google Scholar 

  100. Brogliato B (1999) Nonsmooth mechanics: models, dynamics and control. Springer, Berlin

    Book  MATH  Google Scholar 

  101. Guess TM, Maletsky LP (2005) Computational modelling of a total knee prosthetic loaded in a dynamic knee simulator. Med Eng Phys 27(5):357–367

    Article  Google Scholar 

  102. Yang D, Sun Z (1985) A rotary model for spur gear dynamics. J Mech Des 107(4):529–535

    Google Scholar 

  103. Dubowsky S, Freudenstein F (1971) Dynamic analysis of mechanical systems with clearances—part 1: formation of dynamic model. J Eng Ind 93(1):305–309

    Article  Google Scholar 

  104. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  105. Flores P et al (2008) Translational joints with clearance in rigid multibody systems. J Comput Nonlinear Dyn 3(1):011007

    Article  MathSciNet  Google Scholar 

  106. Pereira CM, Ramalho AL, Ambrósio JA (2011) A critical overview of internal and external cylinder contact force models. Nonlinear Dyn 63(4):681–697

    Article  Google Scholar 

  107. Brändlein J (1995) Die Wälzlagerpraxis. Handbuch für die Berechnung und Gestaltung von Lagerungen. Mainz: Vereinigte Fachverlage,| c1995, 3., neu bearb. Aufl., edited by Braendlein, Johannes, 1

  108. Van Nijen G (2001) On the overrolling of local imperfection in rolling bearings. Ph.D. Thesis, University of Twente, Enschede, the Netherlands

  109. Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  110. Goodman L, Keer L (1965) The contact stress problem for an elastic sphere indenting an elastic cavity. Int J Solids Struct 1(4):407–415

    Article  Google Scholar 

  111. Liu C, Zhang K, Yang L (2005) The compliance contact model of cylindrical joints with clearances. Acta Mech Sin 21(5):451–458

    Article  MATH  Google Scholar 

  112. Tian Q et al (2011) A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn 64(1–2):25–47

    Article  MATH  Google Scholar 

  113. Liu C-S, Zhang K, Yang L (2005) Normal force-displacement relationship of spherical joints with clearances. J Comput Nonlinear Dyn 1(2):160–167

    Article  Google Scholar 

  114. Luo L, Nahon M (2005) A compliant contact model including interference geometry for polyhedral objects. J Comput Nonlinear Dyn 1(2):150–159

    Article  Google Scholar 

  115. Luo L, Nahon M (2010) Development and validation of geometry-based compliant contact models. J Comput Nonlinear Dyn 6(1):011004

    Article  Google Scholar 

  116. Bei Y, Fregly BJ (2004) Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 26(9):777–789

    Article  Google Scholar 

  117. Pérez-González A et al (2008) A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Med Eng Phys 30(3):387–398

    Article  Google Scholar 

  118. Mukras SM et al. (2010) Evaluation of contact force and elastic foundation models for wear analysis of multibody systems. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers

  119. Dubowsky S, Deck J, Costello H (1987) The dynamic modeling of flexible spatial machine systems with clearance connections. J Mech Des 109(1):87–94

    Google Scholar 

  120. Dubowsky S, Freudenstein F (1971) Dynamic analysis of mechanical systems with clearances—part 2: dynamic response. J Manuf Sci Eng 93(1):310–316

    Google Scholar 

  121. Dubowsky S, Gardner T (1977) Design and analysis of multilink flexible mechanisms with multiple clearance connections. J Manuf Sci Eng 99(1):88–96

    Google Scholar 

  122. Dubowsky S, Young S (1975) An experimental and analytical study of connection forces in high-speed mechanisms. J Manuf Sci Eng 97(4):1166–1174

    Google Scholar 

  123. Rogers R, Andrews G (1977) Dynamic simulation of planar mechanical systems with lubricated bearing clearances using vector-network methods. J Manuf Sci Eng 99(1):131–137

    Google Scholar 

  124. Khulief Y, Shabana A (1987) A continuous force model for the impact analysis of flexible multibody systems. Mech Mach Theory 22(3):213–224

    Article  Google Scholar 

  125. Fox B, Jennings L, Zomaya A (2001) Numerical computation of differential-algebraic equations for non-linear dynamics of multibody systems involving contact forces. J Mech Des 123(2):272–281

    Article  Google Scholar 

  126. Hegazy S, Rahnejat H, Hussain K (1999) Multi-body dynamics in full-vehicle handling analysis. Proc Inst Mech Eng Part K J Multi-body Dyn 213(1):19–31

    Google Scholar 

  127. Bibalan PT, Featherstone R (2009) A study of soft contact models in simulink. In: Australasian Conference on Robotics and Automation. Citeseer

  128. Goyal S, Pinson E, Sinden F (1994) Simulation of dynamics of interacting rigid bodies including friction I: general problem and contact model. Eng Comput 10(3):162–174

    Article  Google Scholar 

  129. Goyal S, Pinson EN, Sinden FW (1994) Simulation of dynamics of interacting rigid bodies including friction II: software system design and implementation. Eng Comput 10(3):175–195

    Article  Google Scholar 

  130. Kuwabara G, Kono K (1987) Restitution coefficient in a collision between two spheres. Jpn J Appl Phys 26(8R):1230

    Article  Google Scholar 

  131. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250

    Article  Google Scholar 

  132. Lee J, Herrmann HJ (1993) Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J Phys A: Math Gen 26(2):373

    Article  Google Scholar 

  133. Brilliantov NV et al (1996) Model for collisions in granular gases. Phys Rev E 53(5):5382–5392

    Article  Google Scholar 

  134. Brilliantov NV et al (1996) The collision of particles in granular systems. Phys A 231(4):417–424

    Article  Google Scholar 

  135. Schwager T, Pöschel T (1998) Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys Rev E 57(1):650–654

    Article  Google Scholar 

  136. Bordbar M, Hyppänen T (2007) Modeling of binary collision between multisize viscoelastic spheres. J Numer Anal Ind Appl Math 2(3–4):115–128

    MATH  Google Scholar 

  137. Guess TM et al (2010) A subject specific multibody model of the knee with menisci. Med Eng Phys 32(5):505–515

    Article  Google Scholar 

  138. Gonthier Y et al (2004) A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst Dyn 11(3):209–233

    Article  MATH  Google Scholar 

  139. Papetti S, Avanzini F, Rocchesso D (2011) Numerical methods for a nonlinear impact model: a comparative study with closed-form corrections. IEEE Trans Audio Speech Lang Process 19(7):2146–2158

    Article  Google Scholar 

  140. Herbert RG, McWhannell DC (1977) Shape and frequency composition of pulses from an impact pair. J Eng Ind 99(3):513–518

    Article  Google Scholar 

  141. Sarkar N, Ellis RE, Moore TN (1997) Backlash detection in geared mechanisms: modeling, simulation, and experimentation. Mech Syst Signal Process 11(3):391–408

    Article  Google Scholar 

  142. Yigit AS, Ulsoy AG, Scott RA (1990) Spring-dashpot models for the dynamics of a radially rotating beam with impact. J Sound Vib 142(3):515–525

    Article  Google Scholar 

  143. Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. J Mech Des 112(3):369–376

    Article  Google Scholar 

  144. Shivaswamy S (1997) Modeling contact forces and energy dissipation during impact in mechanical systems. Wichita State University, Departemnt of Mechanical Engineering, Wichita

    Google Scholar 

  145. Ivanov AP (1996) Bifurcations in impact systems. Chaos, Solitons Fractals 7(10):1615–1634

    Article  MathSciNet  MATH  Google Scholar 

  146. Lee H-S, Yoon Y-S (1994) Impact analysis of flexible mechanical system using load-dependent Ritz vectors. Finite Elem Anal Des 15(3):201–217

    Article  MATH  Google Scholar 

  147. Pereira CM, Ambrósio JA, Ramalho AL (2010) A methodology for the generation of planar models for multibody chain drives. Multibody Syst Dyn 24(3):303–324

    Article  MATH  Google Scholar 

  148. Schwab A, Meijaard J, Meijers P (2002) A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech Mach Theory 37(9):895–913

    Article  MATH  Google Scholar 

  149. Wasfy TM, Noor AK (2003) Computational strategies for flexible multibody systems. Appl Mech Rev 56(6):553–613

    Article  Google Scholar 

  150. Muthukumar S, DesRoches R (2006) A Hertz contact model with non-linear damping for pounding simulation. Earthq Eng Struct Dyn 35(7):811–828

    Article  Google Scholar 

  151. Lankarani HM, Nikravesh PE (1994) Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn 5(2):193–207

    Google Scholar 

  152. Zhang Y, Sharf I (2004) Compliant force modelling for impact analysis. In: ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers

  153. Zhiying Q, Qishao L (2006) Analysis of impact process based on restitution coefficient. J Dyn Control 4:294–298

    Google Scholar 

  154. Ye K, Li L, Zhu H (2009) A note on the Hertz contact model with nonlinear damping for pounding simulation. Earthq Eng Struct Dyn 38(9):1135–1142

    Article  Google Scholar 

  155. Flores P et al (2011) On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst Dyn 25(3):357–375

    Article  MATH  Google Scholar 

  156. Gharib M, Hurmuzlu Y (2012) A new contact force model for low coefficient of restitution impact. J Appl Mech 79(6):064506

    Article  Google Scholar 

  157. Khatiwada S, Chouw N, Butterworth JW (2014) A generic structural pounding model using numerically exact displacement proportional damping. Eng Struct 62–63:33–41

    Article  Google Scholar 

  158. Burgin LV, Aspden RM (2008) Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J Mater Sci Mater Med 19(2):703–711

    Article  Google Scholar 

  159. Falcon E et al (1998) Behavior of one inelastic ball bouncing repeatedly off the ground. Eur Phys J B Condens Matter Complex Syst 3(1):45–57

    Article  Google Scholar 

  160. Gugan D (2000) Inelastic collision and the Hertz theory of impact. Am J Phys 68(10):920–924

    Article  Google Scholar 

  161. Kagami J, Yamada K, Hatazawa T (1983) Contact between a sphere and rough plates. Wear 87(1):93–105

    Article  Google Scholar 

  162. Minamoto H, Kawamura S (2009) Effects of material strain rate sensitivity in low speed impact between two identical spheres. Int J Impact Eng 36(5):680–686

    Article  Google Scholar 

  163. Půst L, Peterka F (2003) Impact oscillator with Hertz’s model of contact. Meccanica 38(1):99–116

    Article  MATH  Google Scholar 

  164. Ramírez R et al (1999) Coefficient of restitution of colliding viscoelastic spheres. Phys Rev E 60(4):4465

    Article  MathSciNet  Google Scholar 

  165. Rigaud E, Perret-Liaudet J (2003) Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. Part 1: harmonic excitation. J Sound Vib 265(2):289–307

    Article  Google Scholar 

  166. Tatara Y (1989) Extensive theory of force-approach relations of elastic spheres in compression and in impact. J Eng Mater Technol 111(2):163–168

    Article  Google Scholar 

  167. Tatara Y, Moriwaki N (1982) Study on impact of equivalent two bodies: coefficients of restitution of spheres of brass, lead, glass, porcelain and agate, and the material properties. Bull JSME 25(202):631–637

    Article  Google Scholar 

  168. Villaggio P (1996) The rebound of an elastic sphere against a rigid wall. J Appl Mech 63(2):259–263

    Article  MATH  Google Scholar 

  169. Vu-Quoc L, Zhang X, Lesburg L (2001) Normal and tangential force–displacement relations for frictional elasto-plastic contact of spheres. Int J Solids Struct 38(36):6455–6489

    Article  MATH  Google Scholar 

  170. Vu-Quoc L, Zhang X, Lesburg L (1999) A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation. J Appl Mech 67(2):363–371

    Article  MATH  Google Scholar 

  171. Wu C-Y, Li L-Y, Thornton C (2005) Energy dissipation during normal impact of elastic and elastic–plastic spheres. Int J Impact Eng 32(1):593–604

    Article  Google Scholar 

  172. Wu C-Y, Li L-Y, Thornton C (2003) Rebound behaviour of spheres for plastic impacts. Int J Impact Eng 28(9):929–946

    Article  Google Scholar 

  173. Yoshioka N (1997) A review of the micromechanical approach to the physics of contacting surfaces. Tectonophysics 277(1):29–40

    Article  Google Scholar 

  174. Zhang X, Lesburg L (2000) A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation. J Appl Mech 67:363–371

    Article  MATH  Google Scholar 

  175. Valles RE, Reinhorn AM (1997) Evaluation, prevention and mitigation of pounding effects in building structures. National Center for Earthquake Engineering Research, University of Buffalo, Buffalo

    Google Scholar 

  176. Valles-Mattox R, Reinhorn A (1996) Evaluation, prevention and mitigation of pounding effects in building structures. In: Eleventh World Conference on Earthquake Engineering

  177. Pfeiffer F, Glocker C (2000) Multibody dynamics with unilateral contacts, vol 421. Springer, Berlin

    MATH  Google Scholar 

  178. Brogliato B et al (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150

    Article  Google Scholar 

  179. Pfeiffer F (2003) The idea of complementarity in multibody dynamics. Arch Appl Mech 72(11–12):807–816

    MATH  Google Scholar 

  180. Newton I (1999) The principia: mathematical principles of natural philosophy. University of California Press, Berkeley

    MATH  Google Scholar 

  181. Jankowski R (2005) Non-linear viscoelastic modelling of earthquake-induced structural pounding. Earthq Eng Struct Dyn 34(6):595–611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Chanda, A. & Das, R. Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review. Arch Computat Methods Eng 24, 397–422 (2017). https://doi.org/10.1007/s11831-016-9164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9164-5

Keywords

Navigation