Skip to main content
Log in

On the contact detection for contact-impact analysis in multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time-step integration algorithms are used and the preimpact dynamics does not involve high-frequencies, the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time-step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency, and its ability to deal with the transitions between non-contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004)

    Article  MATH  Google Scholar 

  3. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementary systems in dynamics. Multibody Syst. Dyn. 13, 447–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  6. Najafabadi, S.A.M., Kövecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pfeifer, F., Glocker, C.: Multibody Dynamics with Unilateral Constraints. Wiley, New York (1996)

    Book  Google Scholar 

  8. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Qiang, T., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Google Scholar 

  10. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ambrósio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009)

    Article  MATH  Google Scholar 

  12. Machado, M., Flores, F., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. (2010). doi: 10.1007/s11071-009-9608-7

    Google Scholar 

  13. Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99–120 (2010)

    Article  MATH  Google Scholar 

  14. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. (2010). doi: 10.1007/s11071-009-9583-z

    Google Scholar 

  15. Erkaya, S., Uzmay, I.: Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody Syst. Dyn. (2010). doi: 10.1007/s11044-010-9192-0

    Google Scholar 

  16. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. Proc. Inst. Mech. Eng., Part-K, J. Multibody Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  18. Han, I., Gilmore, B.J.: Multi body impact motion with friction analysis, simulation, and validation. J. Mech. Des. 115, 412–422 (1993)

    Article  Google Scholar 

  19. Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition deletion – I Theory. Mech. Mach. Theory 21, 401–406 (1986)

    Article  Google Scholar 

  20. Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn. 21, 37–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010)

    Article  Google Scholar 

  23. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  24. Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. (2010). doi: 10.1007/s11071-009-9616-7

    MATH  Google Scholar 

  25. Bhalerao, K.D., Anderson, K.S.: Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn. (2010). doi: 10.1007/s11071-009-9580-2

    MATH  Google Scholar 

  26. Djerassi, A.: Collision with friction; Part B: Poisson’s and Stornge’s hypotheses. Multibody Syst. Dyn. 21, 55–70 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lee, T.W., Wang, A.C.: On the dynamics of intermittent-motion mechanisms. Part 1 - Dynamic model and response. J. Mech. Transm. Autom. Des. 105, 534–540 (1983)

    Article  Google Scholar 

  28. Khulief, Y.A., Shabana, A.A.: Dynamic analysis of constrained system of Rigid and flexible bodies with intermittent motion. J. Mech. Transm. Autom. Des. 108, 38–45 (1986)

    Article  Google Scholar 

  29. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22, 213–224 (1987)

    Article  Google Scholar 

  30. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  31. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Erickson, D., Weber, M., Sharf, I.: Contact stiffness and damping estimation for robotic systems. Int. J. Robot. Res. 22(1), 41–57 (2003)

    Article  Google Scholar 

  34. Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic multibody road vehicle models for crashworthiness. Multibody Syst. Dyn. 19, 133–158 (2008)

    Article  MATH  Google Scholar 

  35. Carsten, H., Wriggers, P.: An explicit multi-body contact algorithm. Proc. Appl. Math. Mech. 3, 280–281 (2003)

    Article  Google Scholar 

  36. Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ebrahimi, S., Hippmann, G., Eberhard, P.: Extension of polygonal contact model for flexible multibody systems. Int. J. Appl. Math. Mech. 1, 33–50 (2005)

    Google Scholar 

  38. Ebrahimi, S., Eberhard, P.: A linear complementarity formulation on position level for frictionless impact of planar deformable bodies. ZAMM Z. Angew. Math. Mech. 86(10), 807–817 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. He, K., Dong, S., Zhou, Z.: Multigrid contact detection method. Phys. Rev. 75(3), 036710 (2007)

    Google Scholar 

  40. Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Engin. Comput. Int. J. Comput.-Aided Eng. Softw. 25(5), 432–442 (2008)

    Article  Google Scholar 

  41. Studer, C., Leine, R.I., Glocker, C.: Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics. Int. J. Numer. Methods Eng. 76(11), 1747–1781 (2008)

    Article  MathSciNet  Google Scholar 

  42. Portal, R.J.F., Dias, J.M.P., Sousa, L.A.G.: Contact detection between convex superquadric surfaces on multibody dynamics. In: Arczewski, K., Frączek, J., Wojtyra, M. (eds.) Proceedings of the Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June–2 July 2009, 14 p

  43. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  44. Glocker, C.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    MATH  Google Scholar 

  45. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 0110071-10 (2008)

    Google Scholar 

  46. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  47. Dias, J.M.P., Pereira, M.S.: Dynamics of flexible mechanical systems with contact-impact and plastic deformations. Nonlinear Dyn. 8, 491–512 (1995)

    Google Scholar 

  48. Hunt, K.H., Crossley, F.R.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

    Google Scholar 

  49. Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52, 527–634 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  50. Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51, 321–341 (1998)

    Article  Google Scholar 

  51. Brogliato, B., Ten Dam, A.A., Paoli, L., Genot, F., Abadie, M.: Numerical simulations of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. 55, 107–150 (2002)

    Article  Google Scholar 

  52. Glocker, C., Pfeiffer, F.: Complementarity problems in multibody systems with planar friction. Arch. Appl. Mech. 63(7), 452–463 (1993)

    MATH  Google Scholar 

  53. Pang, J., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73(2), 199–226 (1996)

    Article  MathSciNet  Google Scholar 

  54. Trinkle, J.C., Tzitzouris, J.A., Pang, J.S.: Dynamic multi-rigid-body systems with concurrent distributed contacts. Philos. Trans. Math. Phys. Eng. Sci. 359(1789), 2575–2593 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. Pfeiffer, F.: The idea of complementarity in multibody dynamics. Arch. Appl. Mech. 72(11-12), 807–816 (2003)

    MATH  Google Scholar 

  56. Signorini, A.: Sopra alcune questioni di elastostatica. In: Atti della Societa Italian per il Progresso della Scienza (1933)

  57. Moreau, J.J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends in Applications of Pure Mathematics to Mechanics, vol. 2, pp. 263–280. Pitman, London (1979)

    Google Scholar 

  58. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functionals. Birkhäuser, Basel (1985)

    Google Scholar 

  59. Kwak, B.M.: Complementarity problem formulation of three-dimensional frictional contact. J. Appl. Mech. 58, 134–140 (1991)

    Article  MATH  Google Scholar 

  60. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  61. Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Autom. Control 48(6), 918–935 (2003)

    Article  MathSciNet  Google Scholar 

  62. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  63. Hertz, H.: On the contact of solids – On the contact of rigid elastic solids and on hardness, (Translated by D.E. Jones and G.A. Schott), Miscellaneous Papers, pp. 146–183. Macmillan, London (1896)

  64. Goldsmith, W.: Impact – the Theory and Physical Behaviour of Colliding Solids. Edward Arnold, London (1960)

    MATH  Google Scholar 

  65. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  66. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  67. Neto, M.A., Ambrósio, J.: Stabilization methods for the integration of differential-algebraic equations in the presence of redundant constraints. Multibody Syst. Dyn. 10(1), 81–105 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  68. Gear, C.W.: Numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory CT-18, 89–95 (1982)

    Google Scholar 

  69. Shampine, L., Gordon, M.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  70. IMSL Math Library, Visual Numerics Inc., Huston, Texas (1997)

  71. Matlab, Mathworks Inc., Natick, Massachusetts (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, P., Ambrósio, J. On the contact detection for contact-impact analysis in multibody systems. Multibody Syst Dyn 24, 103–122 (2010). https://doi.org/10.1007/s11044-010-9209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9209-8

Keywords

Navigation