Skip to main content
Log in

LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A heat stress transcription factor LlHSFA1 in lily and its relationship with LlHSFA2 was investigated, and its function in enhancing thermotolerance was confirmed by analyzing transgenic Arabidopsis thaliana overexpressed LlHSFA1.

Abstract

A large family of heat stress transcription factors that are involved in the heat stress response in plants can induce the expression of multiple genes related to thermotolerance including heat-shock proteins. In this study, a novel class A1 HSF named LlHSFA1 was isolated from leaves of lily (Lilium longiflorum cv. ‘White Heaven’) using the rapid amplification of cDNA ends technique. Analysis of the deduced amino acid sequence and construction of a phylogenetic tree showed that LlHSFA1 contained five critical domains and motifs and belonged to the A1 family of HSFs. Following the heat treatment of lily leaves, transcription of LlHSFA1 was induced to a varying extent, related to the time of measurement. The induced expression peak of LlHSFA1 occurred prior to that of LlHSFA2, during the early phase of heat stress. Following transient expression of LlHSFA1 in Nicotiana benthamiana, LlHSFA1 was found to be localized in both the nucleus and the cytoplasm. Analysis using bimolecular fluorescence complementation and a yeast two-hybrid assay demonstrated that LlHSFA1 could interact with LlHSFA2. Use of a yeast one-hybrid assay confirmed that LlHSFA1 had transcriptional activation activity. In transgenic Arabidopsis lines overexpressing LlHSFA1 under unstressed conditions, the expression of some putative target genes was up-regulated, in comparison with expression in wild-type plants, and furthermore, the thermotolerance of the transgenic lines was enhanced. Overall, LlHSFA1 was demonstrated to play an important role in the heat stress response of lily and to be a novel candidate gene for application in lily breeding, using genetic modification approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AARs:

Amino acid residues

BiFC:

Bimolecular fluorescence complementation

DBD:

DNA-binding domain

GFP:

Green fluorescent protein

HS:

Heat shock/stress

HSE:

Heat shock element

HSF:

Heat stress transcription factor

HSP:

Heat-shock protein

HSR:

Heat stress response

NES:

Nuclear export signal

NLS:

Nuclear localization signal

OD:

Oligomerization domain

ORF:

Open reading frame

qRT-PCR:

Quantitative real-time PCR

RACE:

Rapid amplification of cDNA ends technique

UTR:

Untranslated region

WT:

Wild type

YFP:

Yellow fluorescent protein

References

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Doring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29(4):471–487. doi:10.1007/bf02712120

    Article  CAS  PubMed  Google Scholar 

  • Batoko H, Zheng H-Q, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bharti K, von Koskull-Doring P, Bharti S, Kumar P, Tintschl-Korbitzer A, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16(6):1521–1535. doi:10.1105/tpc.019927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41(1):1–14. doi:10.1111/j.1365-313X.2004.02272.x

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Yi J, Wu Z, Luo X, Zhong X, Wu J, Khan MA, Zhao Y, Yi M (2013) Involvement of Ca2+ and CaM3 in regulation of thermotolerance in lily (Lilium longiflorum). Plant Mol Biol Rep 31(6):1293–1304. doi:10.1007/s11105-013-0587-y

    Article  CAS  Google Scholar 

  • Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf K-D (2009) Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J Biol Chem 284(31):20848–20857. doi:10.1074/jbc.M109.007336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262. doi:10.1104/pp.106.091322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286(2):171–187. doi:10.1007/s00438-011-0638-8

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana JP, Khurana P (2013) A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One 8(11):e79577. doi:10.1371/journal.pone.0079577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Yin X, Wang L, Tian J, Yang R, Liu D, Yu Z, Ma N, Gao J (2013) Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1. Plant Mol Biol 83(3):219–233. doi:10.1007/s11103-013-0084-6

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka-verner E, Pan S, Salem T, Gurley WB (2004) Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56(1):57–75. doi:10.1007/s11103-004-2307-3

    Article  CAS  PubMed  Google Scholar 

  • Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12(2):265–278

    Article  PubMed Central  PubMed  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23(2):741–755. doi:10.1105/tpc.110.076018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39(1):98–112. doi:10.1111/j.1365-313X.2004.02111.x

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146(2):748–761. doi:10.1104/pp.107.112060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J-H, Yun HS, Kwon C (2012) Molecular communications between plant heat shock responses and disease resistance. Mol Cells 34(2):109–116. doi:10.1007/s10059-012-0121-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Zhang L, Wang A, Xu X, Li J (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One 8(1):e54880. doi:10.1371/journal.pone.0054880.g001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HC, Charng YY (2012) Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav 7(5):547–550. doi:10.4161/psb.19803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163(1):276–290. doi:10.1104/pp.113.221168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34(5):738–751. doi:10.1111/j.1365-3040.2011.02278.x

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem 64:92–98. doi:10.1016/j.plaphy.2012.12.013

    CAS  PubMed  Google Scholar 

  • Lyck R, Harmening U, Hohfeld I, Treuter E, Scharf KD, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 202(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567. doi:10.1101/gad.228802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796. doi:10.1101/gad.12.24.3788

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52(5):933–945. doi:10.1093/pcp/pcr045

    CAS  PubMed  Google Scholar 

  • Nover L, Scharf KD, Gagliardi D, Vergne P, CzarneckaVerner E, Gurley WB (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1(4):215–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6(3):177–189. doi:10.1379/1466-1268(2001).006<0177:aathst>2.0.co;2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129(2):838–853. doi:10.1104/pp.001362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136(2):3148–3158. doi:10.1104/pp.104.042606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, Winkelhaus S, Bublak D, Scharf KD (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol 135(3):1457–1470. doi:10.1104/pp.104.042820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50(1):54–69. doi:10.1111/j.1365-313X.2007.03034.x

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Miyoshi K (2006) Thermosensitivity of the restoration of male fertility and genotypic differences in the formation of aberrant filaments and pistils among three male-sterile cultivars of Asiatic hybrid lily. In: Schiva T (ed) Proceedings of the 22nd international eucarpia symposium section ornamentals: breeding for beauty. Acta Hortic 714:67–74

  • Scharf KD, Rose S, Zott W, Schoff F, Nover L (1990) 3 Tomato genes code for heat-stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast Hsf. EMBO J 9(13):4495–4501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scharf KD, Heider H, Hohfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18(4):2240–2251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819(2):104–119. doi:10.1016/j.bbagrm.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60(5):759–772. doi:10.1007/s11103-005-5750-x

    Article  CAS  PubMed  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53(2):264–274. doi:10.1111/j.1365-313X.2007.03334.x

    Article  CAS  PubMed  Google Scholar 

  • Suk-Whan H, Elizabeth V (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97(8):4392–4397

    Article  Google Scholar 

  • Suter B, Kittanakom S, Stagljar I (2008) Two-hybrid technologies in proteomics research. Curr Opin Biotechnol 19(4):316–323. doi:10.1016/j.copbio.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol 139(3):1313–1322. doi:10.1104/pp.105.070110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939. doi:10.1111/j.1365-313X.2004.02016.x

    Article  CAS  PubMed  Google Scholar 

  • Treuter E, Nover L, Ohme K, Scharf KD (1993) Promoter specificity and deletion analysis of 3 heat-stress transcription factors of tomato. Mol Gen Genet 240(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12(10):452–457. doi:10.1016/j.tplants.2007.08.014

    Article  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40(3):428–438. doi:10.1111/j.1365-313X.2004.02219.x

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang Q, Shou HX (2009) Identification and expression analysis of OsHsfs in rice. J Zhejiang Univ Sci B 10(4):291–300. doi:10.1631/jzus.B0820190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weining S, Catherine B, van de Cotte B, Marc VM, Nathalie V (2001) AtHSP17. 6A, encoding a small heat shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27(5):407–415

    Article  Google Scholar 

  • Wise AA, Liu Z, Binns AN (2006) Three methods for the Introduction of Foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat shock transcription factors structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29(8):875–885. doi:10.1007/s00299-010-0873-1

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54(1):45–54. doi:10.1007/s10725-007-9227-6

    Article  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227(5):957–967. doi:10.1007/s00425-007-0670-4

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schoffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286(5–6):321–332. doi:10.1007/s00438-011-0647-7

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Ye C, Lu H, Chen X, Chai G, Chen J, Wang C (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J Plant Res 119(3):247–256. doi:10.1007/s10265-006-0267-1

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang Z, Jing Y, Wang L, Liu X, Liu Y, Deng X (2009) Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Mol Biol 71(4–5):451–467. doi:10.1007/s11103-009-9538-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our thanks are due to Prof. Junping Gao (China Agricultural University, China) for kindly offering the modified pCAMBIA1300 vector and BiFC vectors to us. We are also grateful to Xingliang Li, PhD (China Agriculture University, China) for his sincere help and good advice. This work was supported by National Natural Science Foundation of China (No. 30972024) and the Science and Technology Specific Project Foundation of Ministry of Agriculture of China (No. 200903020).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Yi.

Additional information

Communicated by Qiao Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, B., Yi, J., Wu, J. et al. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana . Plant Cell Rep 33, 1519–1533 (2014). https://doi.org/10.1007/s00299-014-1635-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1635-2

Keywords

Navigation