Skip to main content
Log in

Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are multifunctional membrane channels and facilitate the transport of water across plant cell membranes. Among the plant AQPs, plasma membrane intrinsic proteins (PIPs), which cluster in two phylogenetic groups (PIP1 and PIP2), play a key role in plant growth. Our previous work has indicated that RhPIP2;1, a member of PIP2, is involved in ethylene-regulated cell expansion of rose petals. However, whether PIP1s also play a role in petal expansion is still unclear. Here, we identified RhPIP1;1, a PIP1 subfamily member, from 18 PIPs assemble transcripts in rose microarray database responsive to ethylene. RhPIP1;1 was rapidly and significantly down-regulated by ethylene treatment. RhETRs-silencing also clearly decreased the expression of RhPIP1;1 in rose petals. The activity of the RhPIP1;1 promoter was repressed by ethylene in rosettes and roots of Arabidopsis. RhPIP1;1 is mainly localized on endoplasmic reticulum and plasma membrane. We demonstrated that RhPIP1;1-silencing significantly inhibited the expansion of petals with decreased petal size and cell area, as well as reduced fresh weight when compared to controls. Expression of RhPIP1;1 in Xenopus oocytes indicated that RhPIP1;1 was inactive in terms of water transport, while coexpression of RhPIP1;1 with the functional RhPIP2;1 led to a significant increase in plasma membrane permeability. Yeast growth, β-Galactosidase activity, bimolecular fluorescence complementation, and colocalization assay proved existence of the interaction between RhPIP1;1 and RhPIP2;1. We argue that RhPIP1;1 plays an important role in ethylene-regulated petal cell expansion, at least partially through the interaction with RhPIP2;1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K (2011) Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Bioch 49:1029–1039

    Article  CAS  Google Scholar 

  • Beaudette PC, Chlup M, Yee J, Emery RJ (2007) Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA. J Exp Bot 58:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Bellati J, Alleva K, Soto G, Vitali V, Jozefkowicz C, Amodeo G (2010) Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol Biol 74:105–118

    Article  PubMed  CAS  Google Scholar 

  • Besse M, Knipferl T, Miller AJ, Verdeil JL, Jahn TP, Fricke W (2011) Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves. J Exp Bot 62:4127–4142

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthya S, Tuoria RP, D’Ascenzoa MD, Fobertb PR, Desprésc C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC Box and Non-GCC Box cis elements. Plant Cell 15:3033–3050

    Article  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122–123

    Article  PubMed  CAS  Google Scholar 

  • Dai FW, Zhang CQ, Jiang XQ, Kang M, Yin X, Lü PT, Zhang X, Zheng Y, Gao JP (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082

    Article  PubMed  CAS  Google Scholar 

  • Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45–60

    Article  PubMed  Google Scholar 

  • Fetter K, Wilder VV, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant cell 16:215–228

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Pou A, Alsina MM, Tomàs M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    Article  PubMed  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134–162

    Article  PubMed  Google Scholar 

  • Hachez C, Heinen RB, Draye X, Chaumont F (2008) The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Mol Biol 68:337–353

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hu LW, Cui DY, Neillb S, Cai WM (2007) OsEXPA4 and OsRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases. Physiol plantarum 130:560–571

    Article  CAS  Google Scholar 

  • Hu W, Yuan QQ, Wang Y, Cai R, Deng XM, Wang J, Zhou SY, Chen MJ, Chen LH, Huang C, Ma ZB, Yang GX, He GY (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–2141

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci USA 13:8925–8929

    Article  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Johanson U, Karlsson M, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporin in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Kölling A, Richter G (1993) A novel blue light- and abscisic acid-inducible gene of Arabidopsis thaliana encoding an intrinsic membrane protein. Plant Mol Biol 23:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Lopez F, Bousser A, Sissoëff I, Gaspar M, Lachaise B, Hoarau J, Mahé A (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol 44:1384–1395

    Article  PubMed  CAS  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Ma N, Cai L, Lu WJ, Tan H, Gao JP (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci China C Life Sci 48:434–444

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Tan H, Liu XH, Xue JQ, Li YH, Gao JP (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot 57:2763–2773

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Xue JQ, Li YH, Liu XJ, Dai FW, Jia WS, Luo YB, Gao JP (2008) Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol 148:894–907

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Lian HL, Su WA, Tanaka D, Liu CW, Iwasaki I, Kitagawa Y (2009) Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant Cell Physiol 25:216–229

    Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins: a molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  PubMed  CAS  Google Scholar 

  • Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP (2001) Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 25:199–204

    Article  Google Scholar 

  • Mut P, Bustamanteb C, Martínezb G, Allevaa K, Sutkaa M, Civello M, Amodeo G (2008) A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria × ananassa) fruit ripening. Physiol Plant 132:538–551

    Article  PubMed  CAS  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Obroucheva NV, Sin’kevich IA (2010) Aquaporins and cell growth. Russ J Plant Physiol 57:153–165

    Article  CAS  Google Scholar 

  • Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A, Siegfart S, Urban M, Kaldenhoff R (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285:31253–31260

    Article  PubMed  CAS  Google Scholar 

  • Pata MO, Wu BX, Bielawski J, Xiong TC, Hannun YA, Ng CK (2008) Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice. Plant J 55:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Péret B, Li GW, Zhao J, Band LR et al (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14:991–998

    Article  PubMed  Google Scholar 

  • Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I, Schubertb A, Lovisolo C (2012) The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well watered conditions but not under water stress. Plant Physiol 160:965–977

    Article  PubMed  CAS  Google Scholar 

  • Phillips AL, Huttly AK (1994) Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol Biol 24:603–615

    Article  PubMed  CAS  Google Scholar 

  • Rymen B, Sugimoto K (2012) Tuning growth to the environmental demands. Curr Opin Plant Biol 15:683–690

    Article  PubMed  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 47:245–254

    Article  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26:1125–1128

    PubMed  CAS  Google Scholar 

  • Secchi F, Zwieniecki MA (2010) Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ 33:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Biela A, Eckert M, Otto B, Uehlein N, Kaldenhoff R (2001) The tobacco plasma membrane aquaporin NtAQP1. J Exp Bot 34:1953–1957

    Article  Google Scholar 

  • Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  • Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151:843–856

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  PubMed  CAS  Google Scholar 

  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hisrstum L.). Anal Biochem 223:7–12

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Norikoshi R, Suzuki K, Nishijima T, Imanishi H, Ichimura, K (2009) Cell division and expansion growth during rose petal development. J Jpn Soc Hortic Sci 78:356–362

    Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359–12364

    Article  PubMed  CAS  Google Scholar 

  • Zhang RB, Verkman AS (1991) Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am J Physiol-Cell Ph 260:C26–C34

    CAS  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schäffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our particular thanks are due to Dr. Zejian Guo (China Agricultural University, China) for kindly providing us with the modified pCambia 1301 vector; Dr. Jörg Kudla (Universitat Munster, Germany) who kindly provided us with BiFC vectors; Dr. Dawei Li (China Agricultural University, China) who kindly provided us with P19 plasmid; Dr. Legong Li (Capital Normal University, China) for providing us with pGEMHE vectors and their kind help in function assays in Xenopus Oocytes; Dr. Weihua Wu for providing the vectors used for split-ubiqutin yeast two hybrid system. This work was supported by the National Nature Science Foundation of China (Grant no. 30871731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Yin, X., Wang, L. et al. Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1. Plant Mol Biol 83, 219–233 (2013). https://doi.org/10.1007/s11103-013-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0084-6

Keywords

Navigation