Skip to main content
Log in

Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plants respond to heat stress by enhancing the expression of genes encoding heat shock protein (HSPs) genes through activation of heat shock factors (HSFs) which interact with heat shock elements present in the promoter of HSP genes. Plant HSFs have been divided into three conserved classes viz A, B and C. In the present study, a detailed analysis has been done of all rice HSFs, along with their spliced variants. Their chromosomal localization reveals that six HSFs are segmentally duplicated and four pairs of these segmentally duplicated HSF encoding genes show pseudo-functionalization. Expression profiling through microarray and quantitative real-time PCR showed that eight OsHsfs express at a higher level during seed development, while six HSFs are up-regulated in all the abiotic stresses studied. The expression of OsHsfA2a gene in particular was greatly stimulated by heat stress in both root and shoot tissues and also during panicle and seed development. OsHsfA3 was found more responsive to cold and drought stress, while OsHsfA7 and OsHsfA9 showed developing seed-specific expression. This study also revealed that spliced variants generally accumulated at a higher level in all the tissues examined. Different hormones/elicitors like ABA, brassinosteroids and salicylic acid also alter OsHsf gene expression. Calcium in combination with heat stress elevated further the level of HSF transcripts. Expression analysis by both microarray and real-time RT-PCR revealed a unique stable constitutive expression of OsHsfA1 across all the tissues and stresses. A detailed in silico analysis involving identification of unidentified domains has been done by MEME-motif tool in their full-length proteins as well as in DNA-binding domains. Analysis of 1 kb putative promoter region revealed presence of tissue-specific, abiotic stress and hormone-related cis-acting elements, correlating with expression under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485

    Article  PubMed  CAS  Google Scholar 

  • Almoguera C, Rojas A, Diaz-Martin J, Prieto-Dapena P, Carranco R, Jordano J (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 277:43866–43872

    Article  PubMed  CAS  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

    Article  PubMed  Google Scholar 

  • Baker SS, Withekn KS, Thomashow MF (1994) The 5′ region of Arabidopsis thaliana corl5a has cis acting elements that confer cold-drought and ABA regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf KD (2000) Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J 22:355–365

    Article  PubMed  CAS  Google Scholar 

  • Bharti K, Von Koskull-Doring P, Bharti S, Kumar P, Tintschl-Korbitzer A, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16:1521–1535

    Article  PubMed  CAS  Google Scholar 

  • Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekharan MB, Bishop KJ, Hall TC (2003) Module-specific regulation of the beta-phaseolin promoter during embryogenesis. Plant J 33:853–866

    Article  PubMed  CAS  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary N, Nijhawan A, Khurana JP, Khurana P (2009) Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genetics Genomics 283:13–33

    Article  Google Scholar 

  • Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2011) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51

    Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  PubMed  CAS  Google Scholar 

  • Close J, Westwood JT, Becker PB, Wilson S, Lambert U, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097

    Article  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61(2):453–462

    Article  PubMed  CAS  Google Scholar 

  • Gong M, Li YJ, Dai X, Tian M, Li ZG (1997) Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize. J Plant Physiol 150:615–621

    CAS  Google Scholar 

  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008a) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genetics Genomics 35:105–118

    Article  CAS  Google Scholar 

  • Guo L, Chen S, Liu K, Liu Y, Ni L, Zhang K, Zhang L (2008b) Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol 49(9):1306–1315

    Article  PubMed  CAS  Google Scholar 

  • Haralampidids K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interection of Cis elements specifies the expression of the Arabidopsis AtHsp90–1 gene. Plant Physiol 129:1138–1149

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: A database pf plant cis-acting regulatory DNA elements. Nucleic Acid Res 26:358–359

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Ohme-Takagi M (2009) A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 50(5):970–975

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Khurana P, Tyagi AK, Khurana JP (2008) Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 8:69–78

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H et al (2003) Rice Full-Length cDNA Consortium. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Vierling E, Baumlein H, von Koskull-Doring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Busch W, Birke H, Kemmerling B, Nurnberger T, Schoffl F (2009) Heat shock factor HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2:152–165

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  PubMed  CAS  Google Scholar 

  • LeHir H, Nott A, Moore MJ (2003) How introns influence and enhance gene expression? Trends Biochem Sci 28:215–220

    Article  CAS  Google Scholar 

  • Li B, Liu HT, Sun DY, Zhou RG (2004) Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634

    Article  PubMed  CAS  Google Scholar 

  • Li M, Berendzen KW, Schoffl F (2010) Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 73:559–567

    Article  PubMed  CAS  Google Scholar 

  • Lida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nuc Acid Res 32(17):5096–5103

    Article  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Cui SJ, Han JL, Sun DY, Zhou RG (2006) Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res 16:394–400

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  PubMed  CAS  Google Scholar 

  • Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Xiong XY, Chen LY, Chen XB (2010) Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses. J Plant Biol 53:142–149

    Article  Google Scholar 

  • Liu H, Liao H, Charng Y (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. doi:10.1111/j.1365-3040.2011.02278.x

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Sacccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001) Living under a “dormant” canopy: a molecular acclimation mechanism of the desert plant Retama raetam. Plant J 25:407–416

    Article  PubMed  CAS  Google Scholar 

  • Mockler TC, Michael TP, Preist HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The diurnal project: diurnal and circadian expression profiling, model based pattern matching and promoter analysis. Cold Spring Harb Symp Quant Biol 72:353–363

    Article  PubMed  CAS  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2009) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827

    Article  PubMed  Google Scholar 

  • Prandl R, Hinderhofer K, Eggers-Schumacher G, Schoffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258:269–278

    Article  PubMed  CAS  Google Scholar 

  • Prieto-Dapena P, Castano R, Almoguera C, Jordano J (2008) The ectopic overexpression of a seed-specific transcription factor, HaHsfA9, confers tolerance to severe dehydration in vegetative organs. Plant J 54:1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7:623–628

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA 88:6906–6910

    Article  PubMed  CAS  Google Scholar 

  • Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimeric heat shock genes in transgenic tobacco. Mol Gen Genet 231:226–232

    PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  PubMed  CAS  Google Scholar 

  • Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acid Res 27:295–296

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    Article  PubMed  CAS  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638

    Article  PubMed  CAS  Google Scholar 

  • Scharf KD, Heider H, Hohfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat shock granules. Mol Cell Biol 18:2240–2251

    PubMed  CAS  Google Scholar 

  • Schoffl F, Prandl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    Article  PubMed  CAS  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Doring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  PubMed  CAS  Google Scholar 

  • Shim D, Hwang J-U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant J 21:4031–4043

    CAS  Google Scholar 

  • Singh G, Kumar S, Singh P (2003) A quick method to isolate RNA from wheat and other carbohydrate-rich seeds. Plant Mol Biol Rep 21:93a–93f

    Google Scholar 

  • Solano R, Nieto C, Avila J, Cañas L, Diaz I, Paz-Ares J (1995) Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J 14:1773–1784

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed  Google Scholar 

  • WRJr Marcotte, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1:969–976

    Google Scholar 

  • Wunderlich M, Doll J, Busch W, Kleindt CK, Lohmann C, Schoffl F (2007) Heat shock factors: regulators of early and late functions in plant stress response. Plant Stress 1:16–22

    Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl17, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368:515–521

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Eggers-Schumacher G, Schoffl F, Prandl R (2001) Analysis of heat-shock transcription factor DNA binding in Arabidopsis suspension cultures by UV laser crosslinking. Plant J 28:217–223

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lohmann C, Prandl R, Schoffl F (2003) Heat stress dependent DNA binding of Arabidopsis heat shock transcription factor HSF1 to heat shock gene promoters in Arabidopsis suspension culture cells in vivo. Biol Chem 384:959–963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Department of Biotechnology, Government of India. HC and PA thank Council of Scientific and Industrial Research and the University Grants Commission, New Delhi, for the award of research fellowships during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Additional information

Communicated by P. Westhoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2011_638_MOESM1_ESM.jpg

Supplementary Figure S1 Schematic representation of conserved motifs in rice HSF proteins identified using MEME search tool.

Supplementary material 2 (DOC 35 kb)

Supplementary material 3 (DOC 86 kb)

Supplementary material 4 (DOC 67 kb)

438_2011_638_MOESM5_ESM.jpg

Supplementary Figure S2 Schematic representation of conserved motifs in DNA binding domain (DBD) of different rice HSF proteins identified using MEME search tool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, H., Khurana, N., Agarwal, P. et al. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286, 171–187 (2011). https://doi.org/10.1007/s00438-011-0638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0638-8

Keywords

Navigation