Skip to main content

Field Application of Rhizobial Inoculants in Enhancing Faba Bean Production in Acidic Soils: An Innovative Strategy to Improve Crop Productivity

  • Chapter
  • First Online:
Salt Stress, Microbes, and Plant Interactions: Causes and Solution

Abstract

Faba bean is the most vital legume crop in Ethiopia, but abiotic stresses primarily soil acidity are an obstacle for its production. Soil acidity disturbs and potentially limits nitrogen-fixing symbiosis. The interruption of nitrogen fixation and faba bean rhizobia interaction as a result of soil acidity leads to decreasing crop production. Sole dependence on chemical fertilizers for agricultural growth would mean further loss in soil quality and increased environmental damage. Rhizobial species show off sizable metabolic abilities to mitigate abiotic and biotic stresses, and mechanisms in stress tolerance are advancing fast, offering a strong foundation for the choice and engineering of rhizobia and legume hosts with better tolerance to soil acidity accordingly. The vast efforts to pick bioinoculants that can restore nitrogen under acid-affected soils are producing competitive crop yields. The main challenge of using single-type bioinoculant in field application can lead to variable and inconsistent outcomes. Co-inoculation of compatible microbes with organic farming which does not involve use of synthetic pesticides and chemical fertilizers is an imperative element in sustainable agriculture. Therefore, the present chapter focuses on the field application of faba bean rhizobial inoculants in acidic soils as a promising potential input in organic farming system. Moreover, the mechanism of N2 fixation and plant growth promotion systems under severe salt, drought, acidity, temperature, and heavy metal stresses is also highlighted.

Diriba Muleta and Fassil Assefa have equally contributed for this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aamir M, Aslam A, Khan MY, Usman M (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1:17–22

    Google Scholar 

  • Aarons S, Graham P (1991) Response of Rhizobium leguminosarum bv phaseoli to acidity. Plant Soil 134:145–151

    Article  CAS  Google Scholar 

  • Abd-Alla MH, Issa AA, Ohyama T (2014) Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. InTech Open, pp 131–192. https://www.intechopen.com/books/advances-in-biology-and-ecology-of-nitrogen-fixation/impact-of-harsh-environmental-conditions-on-nodule-formation-and-dinitrogen-fixation-of-legumes. Accessed 17 Nov 2018

  • Abdel-Aziz RA, El-Din SMB (2015) Improvement of faba bean productivity in Sinai soils through the application of biofertilizers technology. J Adv Biol 8:1493–1499

    Google Scholar 

  • Abebe T, Birhane T, Nega Y, Workineh A (2014) The prevalence and importance of faba bean diseases with special consideration to the newly emerging “Faba Bean Gall” in Tigray, Ethiopia. Discourse J Agric Food Sci 2:33–38

    Google Scholar 

  • Abubakari F, Tetteh FM, Abubakari F, Tuffour HO, Abubakari A (2016) Strategies for improving nodulation and nitrogen fixation of leguminous crops to enhance production in smallholder farming systems. J Glob Agric Ecol 4:185–190

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Zaidi A, Wani P, Khan M (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 29–44

    Chapter  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Hasnain S (2008) Auxin producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microbial Biotechnol 7:196–208

    Article  CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Temprano FJ (2009) Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain. Eur J Agron 30:205–211

    Article  Google Scholar 

  • Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Rawat L, Meghvansi M, Mahna S (2009) Selection of stress-tolerant rhizobial isolates of wild legumes growing in dry regions of Rajasthan, India. J Agric Biol Sci 4:13–18

    Google Scholar 

  • Alori ET, Dare MO, Babalola OO (2017) Microbial inoculants for soil quality and plant health. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 22. Springer, Cham, pp 281–307

    Chapter  Google Scholar 

  • Ambrazaitienė D (2003) Activity of symbiotic nitrogen fixation in the Dystric Albeluvisol differing in acidity and fertilization (summary)/Simbiotinio azoto fiksavimo aktyvumas skirtingo rūgštumo įvairiai tręštame nepasotintame balkšvažemyje. Agriculture: scientific articles/Žemdirbystė: mokslo darbai/LŽI. LŽUŪ-Akademija 83:173–186

    Google Scholar 

  • Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int’l J Mol Sci 18:E705. https://doi.org/10.3390/ijms18040705

    Article  CAS  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Appunu C, Dhar B (2006) Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. Afr J Biotechnol 5:842–845

    CAS  Google Scholar 

  • Arora N, Kang S, Maheshwari D (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Article  Google Scholar 

  • Aung TT, Buranabanyat B, Piromyou P, Longtonglang A, Tittabutr P, Boonkerd N, Teaumroong N (2013) Enhanced soybean biomass by co-inoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and its effects on microbial community structures. Afr J Microbiol Res 7:3858–3873

    Google Scholar 

  • Azcón R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 991–1002

    Chapter  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from co-inoculation of strains with. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165. https://doi.org/10.3389/fpls.2013.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984

    Article  CAS  PubMed  Google Scholar 

  • Bala A, Giller KE (2006) Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutri Cycl Agroecosyst 76:319–330

    Article  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Bargaz A, Faghire M, Farissi M, Drevon JJ, Ghoulam C (2013) Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiol Plant 35:1633–1644

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan L (2005) Plant growth-promoting. Encycloped Soils Environ 1:103–115

    Article  Google Scholar 

  • Bekere W, Wolde-meskel E, Kebede T (2012) Growth and nodulation response of soybean (Glycine max L.) to Bradyrhizobium inoculation and phosphorus levels under controlled condition in South Western Ethiopia. Afr J Agric Res 7:4266–4270

    Google Scholar 

  • Berraho E, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510

    Article  CAS  Google Scholar 

  • Birhanu A (2014) Environmental degradation and management in Ethiopian highlands: review of lessons learned. J Environ Protect Policy 2:24–34

    Article  Google Scholar 

  • Bogino P, Banchio E, Rinaudi L, Cerioni G, Bonfiglio C, Giordano W (2006) Peanut (Arachishypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann Appl Biol 148:207–212

    Article  Google Scholar 

  • Bordeleau L, Prévost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125

    Article  CAS  Google Scholar 

  • Brígido C, Robledo M, Menéndez E, Mateos PF, Oliveira S (2012) A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants. Mol Plant Microbe Interact 25:1594–1604

    Article  PubMed  CAS  Google Scholar 

  • Brockwell J, Pilka A, Holliday RA (1991) Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales. Aust J Exp Agric 31:211–219

    Article  Google Scholar 

  • Cavigelli MA, Mirsky SB, Teasdale JR, Spargo JT, Doran J (2013) Organic grain cropping systems to enhance ecosystem services. Renew Agric Food Syst 28:145–159

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Charana Walpola B, Yoon MH (2013) Phosphate solubilizing bacteria: assessment of their effect on growth promotion and phosphorous uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chilean J Agric Res 73:275–281

    Article  Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment. Plant Soil 221:167–179

    Article  CAS  Google Scholar 

  • Cheng L et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  CAS  PubMed  Google Scholar 

  • Chimdi A (2015) Assessment of the severity of acid saturations on soils collected from cultivated lands of East Wollega Zone, Ethiopia. Sci Technol Arts Res J 3:42–48

    Article  CAS  Google Scholar 

  • Choudhary D, Sharma K, Gaur R (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    Article  CAS  Google Scholar 

  • Cooper J (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Crépon K, Marget P, Peyronnet C, Carrouée B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339

    Article  Google Scholar 

  • Crockford AJ, Davis GA, Williams HD (1995) Evidence for cell-density-dependent regulation of catalase activity in Rhizobium leguminosarum bv. phaseoli. Microbiology 141:843–851

    Article  CAS  Google Scholar 

  • Cronan JE (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205

    Article  CAS  PubMed  Google Scholar 

  • da Silva VN, Martínez CR, Burity HA, Figueiredo MVB (2007) Estirpes de Paenibacillus promotoras de nodulação específica na simbiose Bradyrhizobium caupi. Acta Scient Agron 29:331–338

    Google Scholar 

  • Damtie Mengistie Y (2018) Evaluation of improved maize varieties (Zea mays L.) to soil acidity tolerance in Assosa, Ethiopia. Master thesis, Haramaya University, Ethiopia

    Google Scholar 

  • Das I, Singh A (2014) Effect of PGPR and organic manures on soil properties of organically cultivated mungbean. Bioscan 9:27–29

    Google Scholar 

  • da-Silva JR, Alexandre A, Brígido C, Oliveira S (2017) Can stress response genes be used to improve the symbiotic performance of rhizobia. AIMS Microbiol 3:365–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawar S, Wahab S, Tariq M, Zaki MJ (2010) Application of Bacillus species in the control of root rot diseases of crop plants. Arch Phytopathol Plant Protect 43:412–418

    Article  Google Scholar 

  • de Lucena DK, Pühler A, Weidner S (2010) The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiol 10:265. https://doi.org/10.1186/1471-2180-10-265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  PubMed  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology-a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Demissie A, Dechassa N, Sharma JJ (2016) Response of Faba bean (Vicia faba L.) to Rhizobium Inoculation and application of mineral phosphorus fertilizer in Bore highlands, Guji Zone, Southern Ethiopia. Master thesis, Haramaya University, Ethiopia

    Google Scholar 

  • Denton M, Farquharson E, Ryder M, Rathjen J, Ballard R (2018) Best options for optimal performance from rhizobial inoculants. GRDC update, Adelaide, Australia

    Google Scholar 

  • Deshwal VK, Chaubey A (2014) Isolation and characterization of Rhizobium leguminosarum from root nodule of Pisum sativum L. J Acad Indust Res 2:464–467

    CAS  Google Scholar 

  • Desta Y, Habtegebrial K, Weldu Y (2015) Inoculation, phosphorous and zinc fertilization effects on nodulation, yield and nutrient uptake of faba bean (Vicia faba L.) grown on calcaric cambisol of semiarid Ethiopia. J Soil Sci Environ Manag 6:9–15

    Article  CAS  Google Scholar 

  • Di Benedetto NA, Carbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3:413–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Article  Google Scholar 

  • Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T, Rossi S, Lacroix C (2012) Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutri 142:271–277

    Article  CAS  Google Scholar 

  • Downie JA (2014) Legume nodulation. Curr Biol 24:R184–R190

    Article  CAS  PubMed  Google Scholar 

  • Drew E, Denton M, Sadras V, Ballard R (2012) Agronomic and environmental drivers of population size and symbiotic performance of Rhizobium leguminosarum bv. viciae in Mediterranean-type environments. Crop Past Sci 63:467–477

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Eisenstein M (2013) Plant breeding: discovery in a dry spell. Nature 501:S7–S9

    Article  CAS  PubMed  Google Scholar 

  • Elboutahiri N, Thami-Alami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiol 10:15. https://doi.org/10.1186/1471-2180-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv.‘elkoca-05’). J Plant Nutri 33:2104–2119

    Google Scholar 

  • Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C (2011) Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Sci Technol 39:389–401

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530

    Article  CAS  Google Scholar 

  • Ferguson B, Lin MH, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8:e23426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figueiredo M, Martinez C, Burity H, Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193

    Article  CAS  Google Scholar 

  • Flores-Félix JD, Silva LR, Rivera LP, Marcos-García M, García-Fraile P, Martínez-Molina E, Mateos PF, Velázquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10:e0122281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fones H, Preston GM (2013) The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 37:495–519

    Article  CAS  PubMed  Google Scholar 

  • Foster JW (1993) The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898

    Article  CAS  PubMed  Google Scholar 

  • Frankenberger AM Jr (2002) Ethylene: agricultural sources and applications. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Fujihara S, Yoneyama T (1993) Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017. Appl Environ Microbiol 59:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI International, London

    Book  Google Scholar 

  • Glenn A, Dilworth M (1994) The life of root nodule bacteria in the acidic underground. FEMS Microbiol Lett 123:1–9

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar H (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5:54–72

    Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiosis 66:133–140

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Indust Crops Prod 76:41–48

    Article  CAS  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 9:566–576

    Article  CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Graham PH, Draeger KJ, Ferrey ML, Conroy MJ, Hammer BE, Martinez E, Aarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Grover M, Madhubala R, Ali SZ, Yadav S, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961

    Article  CAS  PubMed  Google Scholar 

  • Gupta D et al (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431

    Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Haile W, Kebede T, Boke S, Hailemariam A (2008) On-farm evaluation of Rhizobia inoculants on faba Bean (Vicia faba L.) at bulie and Chencha weredas in Southern Ethiopia. Ethiop J Nat Resour 10:75–84

    Google Scholar 

  • Haileselassie B, Stomph TJ, Hoffland E (2011) Teff (Eragrostis tef) production constraints on Vertisols in Ethiopia: farmers’ perceptions and evaluation of low soil zinc as yield-limiting factor. Soil Sci Plant Nutri 57:587–596

    Article  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Yerly J, Rabiei M, Hu Y, Martinuzzi R, Turner RJ (2007) Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl Environ Microbiol 73:4940–4949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig U, Soussana J (2001) Ecophysiology of symbiotic N2-fixation in grassland legumes. Grassland Sci Eur 6:1–10

    Google Scholar 

  • Hayat R, Ali S, Siddique MT, Chatha TH (2008) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40:711–722

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He ZI, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhej Univ Sci B 8:192–207

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hirsch PR (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol 133:159–171

    Article  Google Scholar 

  • Hirt H (2009) Plant stress biology: from genomics to systems biology. Wiley, Hoboken

    Book  Google Scholar 

  • Hungria M, Loureiro M, Mendes I, Campo R, Graham P (2005) Inoculant preparation, production and application nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 223–253

    Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal SK, Naamala J, Dakora FD (2018) Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol Fertil Soils 54:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M, Kutkowska J, Piersiak T, Skorupska A (2010) Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 10:284. https://doi.org/10.1186/1471-2180-10-284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian R, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ (2009) Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol 47:167–171

    Article  CAS  PubMed  Google Scholar 

  • Kabata A, Henry C, Moges D, Kebebu A, Whinting A, Regassa N, Tyler R (2017) Determinants and constraints of pulse production and consumption among farming households of Ethiopia. J Food Res 6:41–49. https://doi.org/10.5539/jfr.v6n1p41

    Article  Google Scholar 

  • Kantar F, Shivakumar BG, Arrese-Igor C, Hafeez FY, Gonalez EM, Imran A, Larrainzar E (2010) Efficient biological nitrogen fixation under warming climates. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Cham, pp 283–306

    Chapter  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Kebede F, Yamoah C (2009) Soil fertility status and numass fertilizer recommendation of typic hapluusterts in the northern highlands of Ethiopia. World Appl Sci J 6:1473–1480

    CAS  Google Scholar 

  • Keneni A, Prabu P, Assefa F (2010) Characterization of acid and salt tolerant rhizobial strains isolated from faba bean fields of Wollo, Northern Ethiopia. J Agric Sci Technol 12:365–376

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils: a review. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants. Sustainable agriculture reviews, vol 1. Springer, Dordrecht, pp 319–350

    Chapter  Google Scholar 

  • Khosravi H, Khavazi K, Mirzashahi K (2001) Use of faba bean inoculants instead of chemical fertilizer (Urea fertilizer) in Safi-Abad Dezfol region, vol 12. Soil Water Res, pp 146–153

    Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kiss E, Huguet T, Poinsot V, Batut J (2004) The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant Microbe Interact 17:235–244

    Article  CAS  PubMed  Google Scholar 

  • Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017) Co-inoculation effect of Rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8:141. https://doi.org/10.3389/fpls.2017.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Krulwich TA, Hicks DB, Swartz T, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdroff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 311–329

    Chapter  Google Scholar 

  • Küçük Ç, Kivanc M (2008) Preliminary characterization of Rhizobium strains isolated from chickpea nodules. Afr J Biotechnol 7:772–775

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey R, Maheshwari D, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Article  Google Scholar 

  • Kurchak O, Provorov N, Simarov B (2001) Plasmid pSym1-32 from Rhizobium leguminosarum bv. viceae, controlling nitrogen-fixing activity, effectiveness of symbiosis, competitiveness, and acid tolerance. Genetika 37:1225–1232

    CAS  PubMed  Google Scholar 

  • Laranjo M, Oliveira S (2011) Tolerance of Mesorhizobium type strains to different environmental stresses. Antonie Van Leeuwenhoek 99:651–662

    Article  CAS  PubMed  Google Scholar 

  • Lebrazi S, Benbrahim KF (2014) Environmental stress conditions affecting the N2-fixing Rhizobium-legume symbiosis and adaptation mechanisms. Afr J Microbiol Res 8:4053–4061

    Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Lloret L, Martínez-Romero E (2005) Evolución y filogenia de Rhizobium. Rev Latin Microbiol 47:43–60

    Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere: Volume 1 & 2. Wiley, London, pp 559–573

    Chapter  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabrouk Y, Hemissi I, Salem IB, Mejri S, Saidi M, Belhadj O (2018) Potential of Rhizobia in improving nitrogen fixation and yields of legumes. https://www.intechopen.com/books/symbiosis/potential-of-rhizobia-in-improving-nitrogen-fixation-and-yields-of-legumes. Accessed on 18 Jan 2019

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersiconesculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytol 2:42–54

    Google Scholar 

  • Maia J, Scotti MR (2010) Growth of Inga vera Willd. subsp. affinis under rizobia inoculation. Revist Ciencia Nutri Vegetal 10:139–149

    Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • McDonald E (2014) Influence of soil pH, phosphorus and sulphur on the frequency of rhizobia genotypes found in four pasture legume species grown in an acid high country soil. Master thesis, Lincoln University, New Zealand

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389

    Article  CAS  PubMed  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 39:1744–1750

    Article  CAS  Google Scholar 

  • Moriarty T, Mullan A, McGrath J, Quinn J, Elborn J, Tunney M (2006) Effect of reduced pH on inorganic polyphosphate accumulation by Burkholderia cepacia complex isolates. Lett Appl Microbiol 42:617–623

    CAS  PubMed  Google Scholar 

  • Morón B, Soria-Díaz ME, Ault J, Verroios G, Noreen S, Rodríguez-Navarro DN, Gil-Serrano A, Thomas-Oates J, Megías M, Sousa C (2005) Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 12:1029–1040

    Article  PubMed  CAS  Google Scholar 

  • Muglia CI, Grasso DH, Aguilar OM (2007) Rhizobium tropici response to acidity involves activation of glutathione synthesis. Microbiology 153:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Muleta D (2007) Microbial inputs in coffee (Coffea arabica L.) production systems, Southwestern Ethiopia. PhD thesis, University of Uppsala, Sweden

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick B, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderiaphytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6:491. https://doi.org/10.3389/fpls.2015.00491

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niste M, Vidican R, Pop R, Rotar I (2013) Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured invitro. ProEnvironment/ProMedium 6:42–45

    Google Scholar 

  • Nyoki D, Ndakidemi PA (2016) Intercropping system, Rhizobia inoculation, phosphorus and potassium fertilization: a strategy of soil replenishment for improved crop yield. Int’l J Curr Microbiol Appl Sci 5:504–522

    Article  Google Scholar 

  • O’Hara GW, Glenn AR (1994) The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Arch Microbiol 161:286–292

    Article  PubMed  Google Scholar 

  • Ogega JK, BAi W, Nekesa AO, Okalebo JR (2018) Evaluating the effectiveness of different rhizobia strains and their effect on crop yields in acid soils of western Kenya. Turk J Agric Food Sci Technol 6:195–198

    Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Ashraf M, Ozturk M, Athar H (eds) Salinity and water stress. tasks for vegetation sciences, vol 44. Springer, Dordrecht, pp 133–147

    Chapter  Google Scholar 

  • Owen D, Williams A, Griffith G, Withers P (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parr JF, Hornick S, Kaufman D (1994) Use of microbial inoculants and organic fertilizers in agricultural production. ASPAC Food & Fertilizer Technology Center

    Google Scholar 

  • Patil P, Ghag P, Patil S (2013) Use of Bio-fertilizers and Organic Inputs-as LISA Technology by Farmers of Sangamner. Int’l J Adv Res Technol 7:28–33

    Google Scholar 

  • Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53:101–110

    Article  CAS  PubMed  Google Scholar 

  • Peighami-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K (2009) Interaction of different media on production and biocontrol efficacy of Pseudomonas fluorescens P-35 and Bacillus subtilis B-3 against grey mould of apple. J Plant Pathol 91:65–70

    Google Scholar 

  • Pelletier N, Arsenault N, Tyedmers P (2008) Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: life cycle perspectives on Canadian canola, corn, soy, and wheat production. Environ Manage 42:989–1001

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Pelt JA, van Verhagen BWM, Ton J, Wees ACM, van Léon-Kloosterziel KM, van Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35:39–54

    CAS  Google Scholar 

  • Premachandra D, Hudek L, Brau L (2016) Bacterial modes of action for enhancing of plant growth. J Biotechnol Biomat 6:1–8

    Google Scholar 

  • Radwan S, Dashti N, El-Nemr I (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int’l J Phytoremed 7:19–32

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rathnayake I, Megharaj M, Krishnamurti G, Bolan NS, Naidu R (2013) Heavy metal toxicity to bacteria–are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere 90:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Reeve WG, Tiwari RP, Wong CM, Dilworth MJ, Glenn AR (1998) The transcriptional regulator gene phrR in Sinorhizobiummeliloti WSM419 is regulated by low pH and other stresses. Microbiology 144:3335–3342

    Article  CAS  PubMed  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Riccillo PM, Muglia CI, De Bruijn FJ, Roe AJ, Booth IR, Aguilar OM (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard H, Foster JW (2004) Escherichiacoli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Ruiz-Díez B, Fajardo S, Puertas-Mejía MA, de Felipe MDR, Fernández-Pascual M (2009) Stress tolerance, genetic analysis and symbiotic properties of root-nodulating bacteria isolated from Mediterranean leguminous shrubs in Central Spain. Arch Microbiol 191:35–46

    Article  PubMed  CAS  Google Scholar 

  • Sachs G, Weeks DL, Wen Y, Marcus EA, Scott DR, Melchers K (2005) Acid acclimation by Helicobacter pylori. Physiology 20:429–438

    Article  CAS  PubMed  Google Scholar 

  • Sachs G, Kraut J, Wen Y, Feng J, Scott D (2006) Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J Membrane Biol 212:71–82

    Article  CAS  PubMed  Google Scholar 

  • Sadeghipour O, Abbasi S (2012) Soybean response to drought and seed inoculation. World Appl Sci J 17:55–60

    CAS  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:30

    Google Scholar 

  • Sahile S, Ahmed S, Fininsa C, Abang MM, Sakhuja PK (2008) Survey of chocolate spot (Botrytis fabae) disease of faba bean (Viciafaba L.) and assessment of factors influencing disease epidemics in northern Ethiopia. Crop Prot 27:1457–1463

    Article  Google Scholar 

  • Sahile S, Fininsa C, Sakhula P, Ahmed S (2009) Evaluation of pathogenic isolates in Ethiopia for the control of chocolate spot in faba bean. Afr Crop Sci J 17:187–197

    Google Scholar 

  • Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma 251:511–523

    Article  CAS  PubMed  Google Scholar 

  • Saini P, Khanna V (2012) Evaluation of native rhizobacteria as promoters of plant growth for increased yield in lentil (Lensculinaris). Recent Res Sci Technol 4:5–9

    CAS  Google Scholar 

  • Samanovic MI, Ding C, Thiele DJ, Darwin KH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11:106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraf M, Dhandhukia P (2005) Response of Sinorhizobium meliloti to high salt concentration and effect of added osmotica. J Microb World 7:250–257

    Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: Effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim J, Kim JW, Shea PJ, Oh BT (2015) IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. J Basic Microbiol 55:652–658

    Article  CAS  PubMed  Google Scholar 

  • Shoeb E, Badar U, Akhter J, Shams H, Sultana M, Ansari MA (2012) Horizontal gene transfer of stress resistance genes through plasmid transport. World J Microbiol Biotechnol 28:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Bhatt BP, Ashutosh A, Kumar S, Sundaram PK, Singh BK, Chandra N, Bharati RC (2012) Improvement of faba bean (Vicia faba L.) yield and quality through biotechnological approach: A review. Afr J Biotechnol 11:15264–15271

    CAS  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–317

    Article  PubMed  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas P, Krishnani K (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal C (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  • Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184:4246–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingl K, Uhlemann E-M, Schmid R, Altendorf K, Bakker EP (2002) Energetics of Helicobacter pylori and its implications for the mechanism of urease-dependent acid tolerance at pH 1. J Bacteriol 184:3053–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaine E, Swaine M, Killham K (2007) Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings of different provenances. Agroforest Syst 69:135–145

    Article  Google Scholar 

  • Syswerda S, Basso B, Hamilton S, Tausig J, Robertson G (2012) Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agric Ecosyst Environ 149:10–19

    Article  CAS  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones-roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vignaradiata (L.) Wilczek]. Afr J Biotechnol 11:15012

    CAS  Google Scholar 

  • Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  CAS  PubMed  Google Scholar 

  • Tejera N, Campos R, Sanjuan J, Lluch C (2005) Effect of sodium chloride on growth, nutrient accumulation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains. J Plant Nutr 28:1907–1921

    Article  CAS  Google Scholar 

  • Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int’l J System Evol Microbiol 58:2871–2875

    Article  CAS  Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Boonkerd N, Singleton PW, Borthakur D (2006) A histidine kinase sensor protein gene is necessary for induction of low pH tolerance in Sinorhizobium sp. strain BL3. Anton van Leeuwen 89:125–134

    Article  PubMed  CAS  Google Scholar 

  • Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR (1996a) Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology 142:1693–1704

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RP, Reeve WG, Dilworthan MJ, Glenn AR (1996b) An essential role for actA in acid tolerance of Rhizobium melilotix. Microbiology 142:601–610

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int’l 2013:863240. https://doi.org/10.1155/2013/863240

    Article  Google Scholar 

  • Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol 9:S2. https://doi.org/10.1186/1471-2180-9-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe D, Sánchez-Nieves J, Vanegas J (2010) Role of microbial biofertilizers in the development of a sustainable agriculture in the tropics soil biology and agriculture in the tropics. In: Dion P (ed) Soil biology and agriculture in the tropics. soil biology, vol 21. Springer, Berlin/Heidelberg, pp 235–250

    Chapter  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Vossen H (2005) A critical analysis of the agronomic and economic sustainability of organic coffee production. Exp Agric 41:449–473

    Article  Google Scholar 

  • van Hulten M, Pelser M, Van Loon L, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Nat’l Acad Sci 103:5602–5607

    Article  CAS  Google Scholar 

  • van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth–promoting rhizobacteria in Eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621

    Article  CAS  Google Scholar 

  • Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Google Scholar 

  • Vriezen JA, De Bruijn FJ, Nüsslein K (2007) Responses of Rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73:3451–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen economy of pulse crop production in the Northern Great Plains. Agron J 99:1710–1718

    Article  CAS  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565. https://doi.org/10.1371/journal.pone.0052565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutri Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wei Y, Deikus G, Powers B, Shelden V, Krulwich TA, Bechhofer DH (2006) Adaptive gene expression in Bacillus subtilis strains deleted for tetL. J Bacteriol 188:7090–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weldua Y, Haileb M, Habtegebrielb K (2012) Effect of zinc and phosphorus fertilizers application on yield and yield components of faba bean (Vicia faba L.) grown in calcaric cambisol of semi-arid northern Ethiopia. J Soil Sci Environ Manag 3:320–326

    CAS  Google Scholar 

  • Wortham BW, Oliveira MA, Patel CN (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 603:106–115

    Article  PubMed  Google Scholar 

  • Xie H, Pasternak J, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur J Soil Biol 63:70–77

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Youseif SH, El-Megeed FHA, Ageez A, Cocking EC, Saleh SA (2014) Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Syst Appl Microbiol 37:560–569

    Article  CAS  PubMed  Google Scholar 

  • Youseif SH, Abd El-Megeed FH, Saleh SA (2017) Improvement of faba bean yield using Rhizobium/agrobacterium inoculant in low-fertility sandy soil. Agronomy 7:2. https://doi.org/10.3390/agronomy7010002

    Article  CAS  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ (2011) Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. J Integr Plant Biol 53:493–506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diriba Muleta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Getahun, A., Muleta, D., Assefa, F., Kiros, S. (2019). Field Application of Rhizobial Inoculants in Enhancing Faba Bean Production in Acidic Soils: An Innovative Strategy to Improve Crop Productivity. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer, Singapore. https://doi.org/10.1007/978-981-13-8801-9_7

Download citation

Publish with us

Policies and ethics