Skip to main content
Log in

Tolerance of Mesorhizobium type strains to different environmental stresses

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The symbiosis between rhizobia and legumes is affected by different environmental conditions. Our aims were to evaluate stress tolerance of Mesorhizobium species and investigate species-specific stress response mechanisms. Tolerance of Mesorhizobium type strains to temperature, salt and pH stress was evaluated. Mesorhizobium thiogangeticum showed highest growth with 1.5% NaCl and Mesorhizobium ciceri at pH 5. Mesorhizobium plurifarium showed higher growth at 37°C. SDS-PAGE analysis revealed changes in the protein profiles, namely the overexpression of a 60 kDa protein, following heat stress. Under salt stress, five overexpressed proteins were identified in M. plurifarium and M. thiogangeticum. Northern analysis revealed an increase in groEL expression in Mesorhizobium huakuii and Mesorhizobium septentrionale after heat shock; by contrast, a decrease was detected in Mesorhizobium albiziae and M. thiogangeticum, upon salt shock. A high diversity in tolerance to temperature, salt and pH stress was detected among Mesorhizobium species. M. thiogangeticum and M. ciceri are moderately halophilic and acidophilic, respectively. Several proteins, overproduced in different strains, may be involved in stress tolerance. groEL expression increased upon heat and decreased upon salt shock. To our knowledge, this is the first study focusing tolerance to temperature, salt and pH stress, as well as groEL expression, in Mesorhizobium type strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelmoumen H, Filali-Maltouf A, Neyra M, Belabed A, El Idrissi MM (1999) Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. J Appl Microbiol 86:889–898

    Article  CAS  Google Scholar 

  • Alexandre A, Oliveira S (2011) Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol 75:28–36

    Article  CAS  PubMed  Google Scholar 

  • Alexandre A, Laranjo M, Young JPW, Oliveira S (2008) dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 58:2839–2849

    Article  CAS  Google Scholar 

  • Alexandre A, Brígido C, Laranjo M, Rodrigues S, Oliveira S (2009) A survey of chickpea rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microb Ecol 58:930–941

    Article  PubMed  Google Scholar 

  • Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. In: Mafart P, Mathot A-G, McMeekin T, Olley J (eds) International symposium on microbial stress and recovery in food. Quimper, France, pp 3–9

    Google Scholar 

  • Ausubel FM et al (1997) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, NY

    Google Scholar 

  • Benzécri JP (1973) Analyse des données. Tome I: Analyse des correspondances. Tome II: La Classification. Dunod, Paris

    Google Scholar 

  • Bhagwat AA, Gross KC, Tully RE, Keister DL (1996) Beta-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing beta-(1leads to 6) linkages. J Bacteriol 178:4635–4642

    CAS  PubMed  Google Scholar 

  • Brígido C, Alexandre A, Laranjo M, Oliveira S (2007) Moderately acidophilic mesorhizobia isolated from chickpea. Lett Appl Microbiol 44:168–174

    Article  PubMed  Google Scholar 

  • Brockwell J, Pilka A, Holliday RA (1991) Soil-pH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in noncultivated soils in central New-South-Wales. Aust J Exp Agric 31:211–219

    Article  Google Scholar 

  • Campbell GRO et al (2003) Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. J Bacteriol 185:3853–3862

    Article  CAS  PubMed  Google Scholar 

  • Chen WX, Wang ET, Kuykendall D (2005) Genus VI. Mesorhizobium. In: Bergeys manual of systematic bacteriology. Springer, New York, pp 403–408

  • Cloutier J, Prévost D, Nadeau P, Antoun H (1992) Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Appl Environ Microbiol 58:2846–2853

    CAS  PubMed  Google Scholar 

  • Correa OS, Barneix AJ (1997) Cellular mechanisms of pH tolerance in Rhizobium loti. World J Microbiol Biotechnol 13:153–157

    Article  CAS  Google Scholar 

  • de Lajudie P et al (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    PubMed  Google Scholar 

  • Dilworth MJ, Howieson JG, Reeve WG, Tiwari RP, Glenn AR (2001) Acid tolerance in legume root nodule bacteria and selecting for it. Aust J Exp Agric 41:435–446

    Article  CAS  Google Scholar 

  • Domínguez-Ferreras A, Perez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuan J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625

    Article  PubMed  Google Scholar 

  • Erie DA, Hajiseyedjavadi O, Young MC, Vonhippel PH (1993) Multiple RNA-polymerase conformations and GreA—control of the fidelity of transcription. Science 262:867–873

    Article  CAS  PubMed  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    CAS  PubMed  Google Scholar 

  • Fernandez A et al (2008) Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus. Proteomics 8:3154–3163

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    Article  CAS  PubMed  Google Scholar 

  • Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 42:83–116

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Franco AA (1993) Effects of high-temperature on nodulation and nitrogen-fixation by Phaseolus vulgaris L. Plant Soil 149:95–102

    Article  CAS  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Article  Google Scholar 

  • Jarvis BDW et al (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Kishinevsky BD, Sen D, Weaver RW (1992) Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant Soil 143:275–282

    Article  Google Scholar 

  • Kulkarni S, Nautiyal CS (1999) Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil. J Gen Appl Microbiol 45:213–220

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Nautiyal CS (2000) Effects of salt and pH stress on temperature-tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora. Current Microbiology 40:221–226

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Surange S, Nautiyal CS (2000) Crossing the limits of Rhizobium existence in extreme conditions. Current Microbiology 41:402–409

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laranjo M, Machado J, Young JPW, Oliveira S (2004) High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 48:101–107

    Article  CAS  PubMed  Google Scholar 

  • Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JPW, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Article  CAS  PubMed  Google Scholar 

  • Leverrier P, Vissers JPC, Rouault A, Boyaval P, Jan G (2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch Microbiol 181:215–230

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211–239

    Article  CAS  PubMed  Google Scholar 

  • Lira MD, Lima AST, Arruda JRF, Smith DL (2005) Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol Biochem 37:235–239

    Article  Google Scholar 

  • Louvrier P, Laguerre G, Amarger N (1996) Distribution of symbiotic genotypes in Rhizobium leguminosarum biovar viciae populations isolated directly from soils. Appl Environ Microbiol 62:4202–4205

    CAS  PubMed  Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean-nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212

    CAS  PubMed  Google Scholar 

  • Minder AC, Narberhaus F, Babst M, Hennecke H, Fischer HM (1997) The dnaKJ operon belongs to the sigma(32)-dependent class of heat shock genes in Bradyrhizobium japonicum. Mol Gen Genet 254:195–206

    Article  CAS  PubMed  Google Scholar 

  • Munevar F, Wollum AG (1982) Response of soybean plants to high root temperature as affected by plant cultivar and Rhizobium strain. Agron J 74:138–142

    Article  Google Scholar 

  • Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant Microbe Interact 15:225–232

    Article  CAS  PubMed  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel J-C (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522

    Article  CAS  PubMed  Google Scholar 

  • Nudler E (2009) RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem 78:335–361

    Article  CAS  PubMed  Google Scholar 

  • Prasad J, McJarrow P, Gopal P (2003) Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl Environ Microbiol 69:917–925

    Article  CAS  PubMed  Google Scholar 

  • Priefer UB et al (2001) Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J Biotechnol 91:223–236

    Article  CAS  PubMed  Google Scholar 

  • Rahmani H et al (2009) Selection of thermotolerant bradyrhizobial strains for nodulation of soybean (Glycine max L.) in semi-arid regions of Iran. World J Microbiol Biotechnol 25:591–600

    Article  Google Scholar 

  • Riccillo PM, Muglia CI, de Bruijn FJ, Roe AJ, Booth IR, Aguilar OM (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues C, Laranjo M, Oliveira S (2006) Effect of heat and pH stress in the growth of chickpea mesorhizobia. Current Microbiology 53:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Díez B, Fajardo S, Puertas-Mejia MA, Felipe MD, Fernandez-Pascual M (2009) Stress tolerance, genetic analysis and symbiotic properties of root-nodulating bacteria isolated from Mediterranean leguminous shrubs in Central Spain. Arch Microbiol 191:35–46

    Article  PubMed  Google Scholar 

  • Rusanganwa E, Gupta RS (1993) Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene 126:67–75

    Article  CAS  PubMed  Google Scholar 

  • Sardesai N, Babu CR (2001) Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69. Microbiol Res 156:279–284

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA (2001) Bacterial nomenclature. In: Boone D, Castenholz R (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 83–88

    Google Scholar 

  • Soussi M, Santamaria M, Ocaña A, Lluch C (2001) Effects of salinity on protein and lipopolysaccharide pattern in a salt-tolerant strain of Mesorhizobium ciceri. J Appl Microbiol 90:476–481

    Article  CAS  PubMed  Google Scholar 

  • Unni S, Rao KK (2001) Protein and lipopolysaccharide profiles of a salt-sensitive Rhizobium sp. and its exopolysaccharide-deficient mutant. Soil Biol Biochem 33:111–115

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wei W, Jiang J, Li X, Wang L, Yang SS (2004) Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Lett Appl Microbiol 39:278–283

    Article  CAS  PubMed  Google Scholar 

  • Wilkins JC, Homer KA, Beighton D (2001) Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol 67:3396–3405

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by project (PTDC/BIO/80932/2006) from Fundação para a Ciência e a Tecnologia (FCT) and co-financed by EU-FEDER through Programme POCI 2010. M. Laranjo acknowledges a Post-Doc fellowship (SFRH/BPD/27008/2006) from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laranjo, M., Oliveira, S. Tolerance of Mesorhizobium type strains to different environmental stresses. Antonie van Leeuwenhoek 99, 651–662 (2011). https://doi.org/10.1007/s10482-010-9539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9539-9

Keywords

Navigation