Skip to main content

Microbe-Mediated Bioremediation: An Eco-friendly Sustainable Approach for Environmental Clean-Up

  • Chapter
  • First Online:
Advances in Soil Microbiology: Recent Trends and Future Prospects

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 3))

Abstract

Bioremediation provides a technique for cleaning up pollution by enhancing the natural biodegradation processes. Due to escalation in the costs of physical and chemical treatments, Microbe-mediated eco-friendly bioremediation technologies are getting more attractive. Each approach of bioremediation process has certain specific advantages and disadvantages, which need to be considered for each location. Microbial cellular enzyme-mediated remediation for successful degradation and clean-up of the wide range of organic contaminants in the polluted ecosystem is also novel and efficient approach. Numerous environmental factors limit and affect the efficiency of microbial degradation of xenobiotic pollutants in contaminated sites. The biological response to environmental pollutants varies within a microbial guild, and the presence of co-contaminants can elicit variable responses to the process of bioremediation. Regardless of which aspect of bioremediation is followed, this technology offers an efficient and cost-effective way to treat contaminated soil and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarry SE, Solomon BO (2008) Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Technol 5(2):223–232

    Article  CAS  Google Scholar 

  • Aghamiri SF, Kabiri K, Emtiazi G (2011) A novel approach for optimization of crude oil bioremediation in soil by the Taguchi method. J Pet Environ Biotechnol 2:108

    Article  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology. Wiley, New York, pp 50–150

    Google Scholar 

  • Ali Elredaisy SM (2010) Ecological benefits of bioremediation of oil contaminated water in rich Savannah of Palogue, upper nile area-Southern Sudan. J Bioremed Biodegrad 1:103. https://doi.org/10.4172/2155-6199.1000103

    Article  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad 1:1–8

    Article  Google Scholar 

  • Austin B, Calomiris JJ, Walker JD, Colwell RR (1977) Numerical taxonomy and ecology of petroleum degrading bacteria. Appl Environ Microbiol 34:60–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Barton LL, Hamilton WA (2007) Sulphate reducing bacteria: environmental and engineered system. Cambridge University Press, Cambridge, p 558

    Book  Google Scholar 

  • Beena AK, Geevarghese PI (2010) A solvent tolerant thermostable protease from a psychrotrophic isolate obtained from pasteurized milk. Dev Microbiol Mol Biol 1:113–119

    Google Scholar 

  • Bennet JW, Wunch KG, Faison BD (2002) Use of fungi for biodegradation. ASM Press, Washington, DC

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgense BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Borgeest C, Greenfeld C, Tomic D, Flaws JA (2002) The effects of endocrine disrupting chemicals on the ovary. Front Biosci 7:1941–1948

    Article  Google Scholar 

  • Bruhn C, Batley RC, Knockmues HJ (1988) The in-vivo construction of 4-chloro-2- nitrophenol assimilatory bacteria. Arch Microbiol 150:171–177

    Article  CAS  Google Scholar 

  • Bunge M, Adrian L, Kraus A, Lorenz WG, Andreesen JR, Gorisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by the anaerobic bacterium Dehalococcoides ethenogenes genes sp. strain CBDBI. Nature 421:357–360

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbial Biotechnol 85:207–212

    Article  CAS  Google Scholar 

  • Cartwright CD, Thompson IP, Burns RG (2000) Degradation and impact of phthalate plasticizers on soil microbial communities. Environ Toxicol Chem 19:1253–1261

    Article  CAS  Google Scholar 

  • Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol Rev 55:59–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu TC, Yen JH, Liu TL, Wang YS (2004) Anaerobic degradation of the organochlorine pesticides DDT and heptachlor in river sediment of Taiwan. Bull Environ Contam Toxicol 72:821–828

    Article  CAS  PubMed  Google Scholar 

  • Cho NS, Wilkolazka AJ, Staszczak M, Cho HY, Ohga S (2009) The role of laccase from white rot fungi to stress conditions. J Fac Agric Kyushu Univ 54:81–83

    CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. J Ind Microbiol 48:114–127

    Article  CAS  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CJ, Philip JC (2000) Comparison of bioaugmentation and biostimulation in treatment of diesel contaminated soil, land contamination and reclamation. University of Edinburgh, Edinburgh

    Google Scholar 

  • Debarati P, Gunjan P, Janmejay P, Rakesh VJK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans GM, Furlong JC (2003) Environmental biotechnology theory and application. Wiley, West Sussex

    Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58(4):641–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1, 2, 4-trichlorobenzene. Bio Med Cent Syst Biol 4:1–14

    Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29(27):6419–6427

    Article  CAS  PubMed  Google Scholar 

  • Fritsche W, Hofrichter M (2008) Aerobic, degradation, by microorganisms: principles of bacterial degradation. In: Rehm HJ, Reed G, Puhler A, Stadler A (eds) Biotechnology, environmental processes II, vol vol IIb. Wiley-VCH, Weinhein, pp 145–167

    Google Scholar 

  • Gianfreda L, Rao MA (2008) Microbe-mediated bioremediation: an eco-friendly sustainable approach for environmental clean-up. Crit Rev Environ Sci Technol 38(4):269–310

    Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremed J 3(1):1–25

    Article  CAS  Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369

    Article  CAS  PubMed  Google Scholar 

  • Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2002) Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulation. J Polym Environ 8(4):183–195

    Article  Google Scholar 

  • Grosse S, Laramee L, Wendlandt KD, McDonald IR, Miguez CB, Kleber HP (1999) Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Appl Environ Microbiol 65(9):3929–3935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Eltis LD, Davies JE, Mohn WW (2007) Transcriptomic analysis reveals a bifurcated terepthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Hayaishi O, Nozaki M (1969) Nature and mechanism of oxygenases. Science 164(3878):389–396

    Article  CAS  PubMed  Google Scholar 

  • He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethane coupled to an anaerobic bacterium. Nature 424:62–65

    Article  CAS  PubMed  Google Scholar 

  • Heberer T (2002) Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  PubMed  Google Scholar 

  • Hiner NP, Ruiz JH, Rodri JN (2002) Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide: catalase-like activity, compound III formation, and enzyme inactivation. J Biol Chem 277(30):26879–26885

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26(4):201–221

    Article  CAS  PubMed  Google Scholar 

  • Izabela G (2002) Microbial transformation of xenobiotics. Chemik 66(8):835–842

    Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal L, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

    CAS  Google Scholar 

  • Jayasekara R, Harding I, Bowater I, Lornergan G (2005) Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251

    Article  CAS  Google Scholar 

  • Jha AK, Singh K, Sharma C, Singh SK, Gupta PK (2011) Assessment of methane and nitrous oxide emissions from livestock in India. J Earth Sci Clim Chang 1:107

    Google Scholar 

  • Jindrova E, Chocova M, Demnerova K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol 47(2):83

    Article  CAS  Google Scholar 

  • Jorgensen KS (2007) In situ bioremediation. Adv Appl Microbiol 61:285–305

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Kumar PA (2006) Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. J Gen Appl Microbiol 52(6):315–320

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanth NGK (2000) Challenges of limiting pesticide residues in fresh vegetables: the Indian experience food safety management in developing countries. CIRAD-FAO, Montpellier, pp 11–13

    Google Scholar 

  • Kenneth EH (1996) Extracellular free radical biochemistry of ligninolytic fungi. New J Chem 20:195–198

    Google Scholar 

  • Kimbara K (2005) Recent developments in the study of microbial aerobic degradation of polychlorinated biphenyls. Microbes Environ 20:127–134

    Article  Google Scholar 

  • Koua D, Cerutti L, Falquet L (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37(1):261–266

    Article  Google Scholar 

  • Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an review. J Environ Manag 85:496

    Article  CAS  Google Scholar 

  • Kumar KK, Prasad MK, Sarma GVS, Murthy CVR (2009) Removal of Cd (II) from aqueous solution using immobilized Rhizomucor Tauricus. J Microbial Biochem Technol 1:015–021

    Article  CAS  Google Scholar 

  • Kyrikou J, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    Article  CAS  Google Scholar 

  • Lalithakumari D (2011) Microbes: a tribute to clean environment. University of Madras, Chennai

    Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • Li W, Barrington S, Kim J (2007) Biodegradation of pentyl amine and aniline from petrochemical wastewater. J Environ Manag 83:191–197

    Article  Google Scholar 

  • Madsen EL (1991) Determining in situ biodegradation: facts and challenges. Environ Sci Technol 25:1663–1673

    Article  Google Scholar 

  • Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66:5141–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai C, Schormann W, Milstein O, Huttermann A (2000) Enhanced stability of laccase in the presence of phenolic compounds. Appl Microbiol Biotechnol 54(4):510–514

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity—a useful indicator of oil biodegradation. Biotechnol Tech 13(12):859–863

    Article  CAS  Google Scholar 

  • Mishra V, Lal R, Srinivasan S (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

    Article  CAS  PubMed  Google Scholar 

  • Nagao T (1998) Health effects of endocrine disruptors. Jpn J Toxicol Environ Health 44:151–167

    Article  CAS  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivprasad HL, Ahmed S, Chaudhary MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Park BK, Kim JE (2006) Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd’s purse roots. Arch Environ Contam Toxicol 50(2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  PubMed  Google Scholar 

  • Prasad MP, Manjunath K (2011) Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian J Biotechnol 10(1):121–124

    CAS  Google Scholar 

  • Reife A, Freeman HS (2000) Pollution prevention in the production of dyes and pigments. Text Chem Color Am Dyes Rep 32:56–60

    CAS  Google Scholar 

  • Reshma SV, Spandana S, Sowmya M (2011) Bioremediation technologies. World Congress of Biotechnology, India, 40

    Google Scholar 

  • Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A (2006) Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut 170(1–4):3–15

    Article  CAS  Google Scholar 

  • Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24(5):500–513

    Article  PubMed  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38(4):227–268

    Article  CAS  Google Scholar 

  • Ruppe S, Neumann A, Braekevelt E, Tomy GT, Stern GA, Maruya KA, Vetter W (2004) Anaerobic transformation of compounds of technical toxaphene. 2. Fate of compounds lacking geminal chlorine atoms. Environ Toxicol Chem 23:591–598

    Article  CAS  PubMed  Google Scholar 

  • Sahrani FK, Ibrahim Z, Yahya A, Aziz M (2008) Isolation and identification of marine sulphate reducing bacteria, Desolfovibrio sp. and Citrobacter freundii from Pasir Gudang, Malaysia. Science 47:365–371

    Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia UH (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161

    Article  CAS  PubMed  Google Scholar 

  • Schmidt O (2006) Wood and tree fungi. Springer, Berlin

    Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering. Wiley, Hoboken

    Google Scholar 

  • Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipase: a review. Biotechnology 10(1):23–40

    Article  CAS  Google Scholar 

  • Sheehan D (1997) Bioremediation protocols. Humana Press, Totowa

    Book  Google Scholar 

  • Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    Article  CAS  PubMed  Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil plant system. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Singh CJ (2003) Optimization of an extracellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia 156(3):151–156

    Article  CAS  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016

    Article  CAS  Google Scholar 

  • Spain J, Nishino SF (1987) Degradation of 1, 4 dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53:1010–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridevi V, Lakshmi MV, Swamy AV, Rao MN (2011) Implementation of response surface methodology for phenol degradation using Pseudomonas putida (NCIM 2102). J Bioremed Biodegrad. https://doi.org/10.4172/2155-6199.1000121

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Horne I, Russell RJ, Oakeshott JG (2002) Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol 93:380–389

    Article  CAS  PubMed  Google Scholar 

  • Swift G (1998) Requirements for biodegradable water soluble polymers. Polym Degrad Stab 59:19–24

    Article  CAS  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204

    Article  CAS  PubMed  Google Scholar 

  • US-EPA (2001) Remediation case studies. Federal Remediation Technology Roundtable. Report No. 542- F-01-032

    Google Scholar 

  • US-EPA (2002) Handbook on in situ treatment of hazardous waste contaminated soils

    Google Scholar 

  • US-EPA (2003) Engineering issue: in situ and ex situ biodegradation technologies for remediation of contaminated sites:6–15

    Google Scholar 

  • Van Agteren MH, Keuning S, Janssen DB (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer, Dordrecht

    Book  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander JRM, Vos WMD, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    Google Scholar 

  • Vasileva-Tonkova E, Galabova D (2003) Hydrolytic enzymes and surfactants of bacterial isolates from lubricant contaminated wastewater. Z Naturforsch 58(1–2):87–92

    CAS  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172

    Google Scholar 

  • Vivaldi M (2001) Bioremediation: an overview. Padova, Italy

    Google Scholar 

  • Wang CC, Lee CM, Chen LJ (2004) Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 39:1767–1779

    Article  Google Scholar 

  • Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 9:359

    Article  CAS  Google Scholar 

  • Weir KM, Sutherland TD, Horne I, Russell RJ, Oakeshott JG (2006) A single moonoxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulphate in an Arthrobacter sp. Appl Environ Microbiol 72:3524–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson L, Bouwer E (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol 18:116–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Sangwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sangwan, S., Dukare, A. (2018). Microbe-Mediated Bioremediation: An Eco-friendly Sustainable Approach for Environmental Clean-Up. In: Adhya, T., Lal, B., Mohapatra, B., Paul, D., Das, S. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-6178-3_8

Download citation

Publish with us

Policies and ethics