Skip to main content
Log in

The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas sp. N31 was isolated from soil using 3-nitrophenol and succinate as sole source of nitrogen and carbon respectively. The strain expresses a nitrophenol oxygenase and can use either 2-nitrophenol or 4-chloro-2-nitrophenol as a source of nitrogen, eliminating nitrite, and accumulating catechol and 4-chlorocatechol, respectively. The catechols were not degraded further. Strains which are able to utilize 4-chloro-2-nitrophenol as a sole source of carbon and nitrogen were constructed by transfer of the haloaromatic degrading sequences from either Pseudomonas sp. B13 or Alcaligenes eutrophus JMP134 (pJP4) to strain N31. Transconjugant strains constructed using JMP134 as the donor strain grew on 3-chlorobenzoate but not on 2,4-dichlorophenoxyacetate. This was due to the non-induction of 2,4-dichlorophenoxyacetate monooxygenase and 2,4-dichlorophenol hydroxylase. Transfer of the plasmid from the 2,4-dichlorophenoxyacetate negative transconjugant strains to a cured strain of JMP134 resulted in strains which also had the same phenotype. This indicates that a mutation has occurred in pJP4 to prevent the expression of 2,4-dichlorophenoxyacetate monooxygenase and 2,4-dichlorophenol hydroxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Bruhn C, Lenke H, Knackmuss H-J (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol 53:208–210

    Google Scholar 

  • Cain RB (1958) The microbial metabolism of nitro-aromatic compounds. J Gen Microbiol 19:1–14

    Google Scholar 

  • Cain RB (1966) Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and a Flavobacterium. J Gen Microbiol 42: 219–235

    Google Scholar 

  • Deutsche Apotheker-Zeitung (1963) 48:1623

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmid isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for the degradation of 2,4-dichlorophenylacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161:85–90

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    Google Scholar 

  • Dorn E, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds: two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174:73–84

    Google Scholar 

  • Friedrich B, Meyer M, Schlegel HG (1983) Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 134:92–97

    Google Scholar 

  • Fritz H (1987) Untersuchungen zum mikrobiellen Abbau von 3-Nitrophenol. Diplomarbeit, Univ Bonn, FRG

    Google Scholar 

  • Germanier F, Wuhrmann K (1963) Über den aeroben mikrobiellen Abbau aromatischer Nitroverbindungen. Pathol Microbiol 26:569–578

    Google Scholar 

  • Haas R, Löw E v (1986) Grundwasserbelastung durch eine Altlast. Die Folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene 37: 33–43

    Google Scholar 

  • Jensen HL, Lautrup-Larsen G (1967) Microorganisms that decompose nitro-aromatic compounds, with special reference to dinitro-orthocresol. Acta Agric Scand 17:115–125

    Google Scholar 

  • Ke Y-H, Gee LC, Durham NN (1959) Mechanism involved in the metabolism of nitrophenylcarboxylic acid compounds by microorganisms. J Bacteriol 77:593–598

    Google Scholar 

  • Latorre J, Reineke W, Knackmuss H-J (1984) Microbial metabolism of chloroanilines: enhanced envolution by natural genetic exchange. Arch Microbiol 140:159–165

    Google Scholar 

  • Montgomery HAC, Dymoc JF (1961) The determination of nitrite in water. Analyst 86:414–416

    Google Scholar 

  • Murthy NBK, Kaufmann DD (1978) Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils. J Agric Food Chem 26:1151–1156

    Google Scholar 

  • Pemberton JM, Corney B, Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North Holland Biochemical Press. Amsterdam, pp 287–299

    Google Scholar 

  • Pieper D (1986) Metabolismus von substituierten Phenoxyacetaten, Phenolen und Benzoaten durch Alcaligenes eutrophus JMP134 und Derivate. Dissertation, Univ Wuppertal, FRG

    Google Scholar 

  • Pieper D, Reineke W, Engesser K-H, Knackmuss H-J (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol 150:95–102

    Google Scholar 

  • Raymond DGM, Alexander M (1971) Microbial metabolism and cometabolism of nitrophenols. Pestic Biochem Physiol 1:123–130

    Google Scholar 

  • Rubio MA, Engesser KH, Knackmuss H-J (1986) Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange. Arch Microbiol 145:116–122

    Google Scholar 

  • Schmidt E, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleylacetic acid. Biochem J 192:339–347

    Google Scholar 

  • Schmidt E, Remberg G, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192:331–337

    Google Scholar 

  • Simon EW (1953) Mechanisms of dinitrophenol toxicity. Biol Rev 28:453–479

    Google Scholar 

  • Spain JC, Wyss O, Gibson DT (1979) Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun 88:634–641

    Google Scholar 

  • Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfd A of Alcaligenes eutrophus JMP134. J Bacteriol 169:2950–2955

    Google Scholar 

  • Teuteberg A (1964) Untersuchungen über den Abbau von Halogen-nitrobenzolen durch Bodenbakterien. Arch Mikrobiol 48: 21–49

    Google Scholar 

  • Venulet J, Van Etten RL (1970) Biochemistry and pharmacology of the nitro- and nitrosogroups. In: Feuer H (ed) The chemistry of the nitro- and nitrosogroups, vol 5 PATAI part 2. Wiley, London, pp 202–287

    Google Scholar 

  • Wacek A, Fiedler R (1949) Über die Oxydation des Brenzcatechins zu Muconsäure. Monatsh Chem 80:170–185

    Google Scholar 

  • Wirth W, Hecht G, Gloxhuber C (1971) Toxikologie-Fibel. Thieme, Stuttgart

    Google Scholar 

  • Zeyer J, Kearney PC (1984) Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J Agric Food Chem 32:238–242

    Google Scholar 

  • Zeyer J, Kocher HP, Timmis KN (1986) Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl Environ Microbiol 52:334–339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruhn, C., Bayly, R.C. & Knackmuss, H.J. The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria. Arch. Microbiol. 150, 171–177 (1988). https://doi.org/10.1007/BF00425158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425158

Key words

Navigation