Skip to main content
Log in

Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Several aerobic metabolic pathways for the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), which are provided by two enzymic systems (dioxygenases and monooxygenases), have been identified. The monooxygenase attacks methyl or ethyl substituents of the aromatic ring, which are subsequently transformed by several oxidations to corresponding substituted pyrocatechols or phenylglyoxal, respectively. Alternatively, one oxygen atom may be first incorporated into aromatic ring while the second atom of the oxygen molecule is used for oxidation of either aromatic ring or a methyl group to corresponding pyrocatechols or protocatechuic acid, respectively. The dioxygenase attacks aromatic ring with the formation of 2-hydroxy-substituted compounds. Intermediates of the “upper” pathway are then mineralized by eitherortho-ormeta-ring cleavage (“lower” pathway). BTEX are relatively water-soluble and there-fore they are often mineralized by indigenous microflora. Therefore, natural attenuation may be considered as a suitable way for the clean-up of BTEX contaminants from gasoline-contaminated soil and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althoff K.A., Mundt M., Eisentraeger A., Dott W., Hollender J.: Microcosms-experiments to assess the potential for natural attenuation of contaminated groundwater.Water Res.35, 720–728 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Alvarez P.J., Vogel T.M.: Substrate interactions of benzene, toluene andpara-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries.Appl. Environ. Microbiol.57, 2981–2985 (1991).

    PubMed  CAS  Google Scholar 

  • Baldwin B.R., Mesarch M.B., Nies L.: Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria.Appl. Microbiol. Biotechnol.53, 748–753 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bielefeldt A.R., Stensel H.D.: Biodegradation of aromatic compounds and TCE by filamentous bacteria-dominated consortium.Biodegradation10, 1–13 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Burback B.L., Perry J.J.: Biodegradation and biotransformation of groundwater pollutant mixtures byMycobacterium vacce.Appl. Environ. Microbiol.59, 1025–1029 (1993).

    PubMed  CAS  Google Scholar 

  • Chang M.K., Voice T.C., Criddle C.: Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, andp-xylene by twoPseudomonas isolates.Biotechnol. Bioeng.41, 1057–1065 (1992).

    Article  Google Scholar 

  • Cho J.S., Wilson J.T., DiGiulio D.C., Vardy J.A., Choi W.: Implementation of natural attenuation at a JP-4 jet fuel release after active remediation.Biodegradation8, 265–273 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cruden D.L., Wolfram J.H., Rogers R.D., Gibson D.T.: Physiological properties of aPseudomonas strain which grows withp-xylene in two-phase (organic-aqueous) medium.Appl. Environ. Microbiol.58, 2723–2729 (1992).

    PubMed  CAS  Google Scholar 

  • Damborský J., Damborská M., Štípek S., Jesenská A., Trantírek L., Sklenář V.: Effect of the carbon source on assessment of degrading bacteria with the spread-plating technique duringin situ bioremediation.Folia Microbiol.45, 35–40 (2000).

    Article  Google Scholar 

  • Davey J.F., Gibson D.T.: Bacterial metabolism ofpara-andmeta-xylene: oxidation of a methyl substituent.J. Bacteriol.119, 923–929 (1974).

    PubMed  CAS  Google Scholar 

  • Davis R.S., Hossler F.E., Stone R.W.: Metabolism ofp-andm-xylene by species ofPseudomonas.Can. J. Microbiol.14, 1005–1009 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Deeb R.A., Cohen L.A.: Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia andRhodococcus rhodochrous.Biotech. Bioeng.62, 526–536 (1999).

    Article  CAS  Google Scholar 

  • Fries M.R., Chee-Zhou J., Sauford J., Tiedje J.M.: Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats.Appl. Environ. Microbiol.60, 2802–2810 (1994).

    PubMed  CAS  Google Scholar 

  • Furukawa K., Simon J.R., Chakrabarty A.M.: Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism inPseudomonas paucimobilis.J. Bacteriol.154, 1356–1362 (1983).

    PubMed  CAS  Google Scholar 

  • Gibson D.T., Mahadevan V., Davey J.F.: Bacterial metabolism ofpara- andmeta-xylene: oxidation of the aromatic ring.J. Bacteriol.119, 930–936 (1974).

    PubMed  CAS  Google Scholar 

  • Häner A., Hohener P., Zeyer J.: Degradation ofp-xylene by denitrifying enrichment culture.Appl. Environ. Microbiol.61, 3185–3188 (1995).

    PubMed  Google Scholar 

  • Harayama S., Rekik M., Wubbolt S., Rose K., Leppik R.A., Timmis K.N.: Characterization of five genes in the upper-pathway operon of TOL plasmid pWWO fromPseudomonas putida and identification of the gene products.J. Bacteriol.171, 5048–5055 (1989).

    PubMed  CAS  Google Scholar 

  • Harwood C.S., Gibson J.: Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes.J. Bacteriol.179, 301–309 (1997).

    PubMed  CAS  Google Scholar 

  • Heider J., Fuchs G.: Anaerobic metabolism of aromatic compounds.Eur. J. Biochem.243, 577–596 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Holden P.A., Halverson L.J., Firestone M.K.: Water stress effects on toluene biodegradation byPseudomonas putida.Biodegradation8, 143–148 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Hyman M.R., Sansome-Schmith A.W., Shears J.H., Wood P.M.: A kinetic study of benzene oxidation to phenol by whole cells ofNitrosomonas europea and evidence for the further oxidation of phenol to hydroquinone.Arch. Microbiol.143, 302–306 (1985).

    Article  CAS  Google Scholar 

  • Kao C.M., Prosser J.: Evaluation of natural attenuation rate at a gasoline spill site.J. Hazard. Mat.B82, 275–289 (2001).

    Article  CAS  Google Scholar 

  • Keener W.K., Arp D.J.: Transformations of aromatic compounds byNitrosomonas europea.Appl. Environ. Microbiol.60, 1914–1920 (1994).

    PubMed  CAS  Google Scholar 

  • Kobal V.M., Gibson D.T., Davis R.E., Garza A.: X-ray determination of the absolute stereochemistry of the initial oxidation product formed from toluene byPseudomonas putida 39/D.J. Am. Chem. Soc.95, 4420–4421 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Kukor J.J., Olsen R.H.: Catechol-2,3-dioxygenases functional in oxygen-limited (hypoxic) environments.Appl. Environ. Microbiol.62, 1728–1740 (1996).

    PubMed  CAS  Google Scholar 

  • Lang E.: Diversity of bacterial capabilities in utilizing alkylated benzenes and other aromatic compounds.Lett. Appl. Microbiol.23, 257–260 (1996).

    PubMed  CAS  Google Scholar 

  • Lee K., Gibson D.T.: Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase fromPseudomonas sp. strain NCIB 9816-4.Appl. Environ. Microbiol.62, 3101–3106 (1996).

    PubMed  CAS  Google Scholar 

  • Lee J.F., Liao P.M., Kuo C.C., Yang H.T., Chiou C.T.: Influence of nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids.J. Coll. Internat. Sci.229, 445–452 (2000).

    Article  CAS  Google Scholar 

  • Marek J., Páca J., Halecký M., Koutský B., Sobotka M., Keshavarz T.: Effect of pH and loading manner on the start-up period of peat biofilter degrading xylene and toluene mixture.Folia Microbiol.46, 205–209 (2001).

    Article  CAS  Google Scholar 

  • Marr E.K., Stone R.W.: Bacterial oxidation of benzene.J. Bacteriol.18, 425–430 (1961).

    Google Scholar 

  • Murray K., Duggleby C.J., Sala-Trepat J.M., Williams P.A.: The metabolism of benzoate and methylbenzoatesvia themeta-cleavage pathway byPseudomonas arvilla mt-2.Eur. J. Biochem.28, 301–310 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Obuekwe C.O., Hourani G., Radwan S.S.: High-temperature hydrocarbon biodegradation activities in Kuwaiti Desert soil samples.Folia Microbiol.46, 535–539 (2001).

    Article  CAS  Google Scholar 

  • Oh Y.S., Shareefdeen Z., Baltzis B.C., Bartha R.: Interactions between benzene, toluene andp-xylene (BTX) during their biodegradation.Biotechnol. Bioeng.44, 533–538 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Olsen R.H., Kukor J.J., Kaphammer B.: A novel toluene-3-monooxygenase pathway cloned fromPseudomonas pickettii PKO1.J. Bacteriol.176, 3749–3756 (1994).

    PubMed  CAS  Google Scholar 

  • Pinkart H.C., Wolfram J.W., Rogers R., White D.C.: Cell envelope changes in solvent-tolerant and solvent-sensitivePseudomonas putida strains following exposure too-xylene.Appl. Environ. Microbiol.62, 1129–1132 (1996).

    PubMed  CAS  Google Scholar 

  • Ramos J.L., Marques S., Timmis K.N.: Transcriptional control of thePseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators.Ann. Rev. Microbiol.51, 341–373 (1997).

    Article  CAS  Google Scholar 

  • Shim H., Yang S.T.: Biodegradation of benzene, toluene, ethylbenzene, ando-xylene by a co-culture ofPseudomonas putida andPseudomonas fluorescens immobilized in fibrous-bed bioreactor.J. Biotechnol.67, 99–112 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Stapleton R.D., Sayler G.S.: Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system.Microb. Ecol.36, 349–361 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tan H.M., Mason J.R.: Cloning and expression of the plasmid-encoded benzene dioxygenase genes fromP. putida ML2.FEMS Microbiol. Lett.72, 259–264 (1990).

    Article  CAS  Google Scholar 

  • Weigner P., Páca J., Loskot P., Koutský B., Sobotka M.: The start-up period of styrene degrading biofilters.Folia Microbiol.46, 211–216 (2001).

    Article  CAS  Google Scholar 

  • Whited G.M., Gibson D.T.: Toluene 4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene top-cresol inPseudomonas mendocina KR1.J. Bacteriol.173, 3010–3016 (1991).

    PubMed  CAS  Google Scholar 

  • Williams P.A., Murray K.: Metabolism of benzoate and the methylbenzoates byPseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid.J. Bacteriol.120, 416–423 (1974).

    PubMed  CAS  Google Scholar 

  • Worsey M.J., Williams P.A.: Metabolism of toluene and xylenes byPseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid.J. Bacteriol.124, 7–13 (1975).

    PubMed  CAS  Google Scholar 

  • Yen K.M., Karl M.R., Blatt L.M., Simon M.J., Winter R.B., Fausset P.R., Lu H.S., Harcourt A.A., Chen K.K.: Cloning and characterization ofPseudomonas mendocina KRI gene cluster encoding toluene-4-monooxygenase.J. Bacteriol.173, 5315–5327 (1991).

    PubMed  CAS  Google Scholar 

  • Zhang W., Bouwer E.J.: Biodegradation of benzene, toluene, toluene and naphthalene in soil-water slurry microcosms.Biodegradation8, 167–175 (1997).

    Article  Google Scholar 

  • Ziffer H., Jerina D.M., Gibson D.T., Kobal Val M.: Absolute stoichiochemistry of the (+)-cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene produced from toluene byPseudomonas putida.J. Am. Chem. Soc.95, 4048–4049 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Zylstra G.J., Gibson D.T.: Toluene degradation byPseudomonas putida F1.J. Biol. Chem.264, 14940–14946 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jindrová, E., Chocová, M., Demnerová, K. et al. Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol 47, 83–93 (2002). https://doi.org/10.1007/BF02817664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817664

Keywords

Navigation