Skip to main content

Apomixis in the Era of Biotechnology

  • Chapter
  • First Online:
Plant Developmental Biology - Biotechnological Perspectives

Abstract

The adaptive success of living organisms depends on the maintenance of a dynamic equilibrium between creating new genetic combinations and fixing those which are more adapted to the present environment. Sexual reproduction is universally the main route to recombine genes in the short term; on the other hand, different strategies have been adopted to fix the genetic composition of individuals demonstrating high fitness. In plants, genotypes may be “immortalized” via vegetative propagation or “photocopied” by selfing of highly homozygous individuals. A third, more technically sophisticated pathway is represented by the implementation of apomixis, where a functional sexual machine is short-circuited to asexually produce embryos with the fixed genotype of the mother plant. This developmental sophistication represents a challenging research field for the reproduction biologist and a desirable trait for the plant breeder to be used in seed production schemes of elite varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Akiyama Y, Hanna WW, Ozias-Akins P (2005) High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet 111:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Falcinelli M (2001a) Apospory and parthenogenesis may be uncoupled in Poa pratensis L.: cytological and genetic evidences. Sex Plant Reprod 14:213–217

    Article  Google Scholar 

  • Albertini E, Barcaccia G, Porceddu A, Sorbolini S, Falcinelli M (2001b) Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Mol Breed 7:293–300

    Article  CAS  Google Scholar 

  • Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M (2004) Isolation of candidate genes for apomixis in Poa pratensis L. Plant Mol Biol 56:879–894

    Article  PubMed  CAS  Google Scholar 

  • Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART: candidate genes for apomixis in Poa pratensis L. Plant Physiol 138:2185–2199

    Article  PubMed  CAS  Google Scholar 

  • Albertini E, Marconi G, Raggi L, Reale L, Barcaccia G, Colombo L, Falcinelli M (2007) Identification and characterization of genes candidate for apomixis in Poa pratensis L. In: Abstr Vol 3rd Int Apomixis Conf, Wernigerode, Germany, p 52

    Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  PubMed  CAS  Google Scholar 

  • Asker S (1980) Gametophytic apomixis: elements and genetic regulation. Hereditas 93:277–293

    Article  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Autran D, Huanca-Mamani W, Vielle-Calzada J-P (2005) Genomic imprinting in plants: the epigenetic version of an Oedipus complex. Curr Opin Plant Biol 8:19–25

    Article  PubMed  CAS  Google Scholar 

  • Babcock EL, Stebbins GL (1938) The American species of Crepis: their interrelationships and distribution as affected by polyploidy and apomixis. Carnegie Inst Washington Publ 504:1–119

    Google Scholar 

  • Bachem CWB, van der Hoeven RS, deBruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Baldwin D, Crane V, Rice D (1999) A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol 2:96–103

    Article  PubMed  CAS  Google Scholar 

  • Bantin J, Matzk F, Dresselhaus T (2001) Tripsacum dactyloides (Poaceae): a natural model system to study parthenogenesis. Sex Plant Reprod 14:219–226

    Article  Google Scholar 

  • Barcaccia G, Mazzucato A, Belardinelli A, Pezzetti M, Lucretti S, Falcinelli M (1997) Inheritance of parental genomes in progenies of Poa pratensis L. from sexual and apomictic genotypes as assessed by RAPD markers and flow cytometry. Theor Appl Genet 95:516–524

    Article  CAS  Google Scholar 

  • Barcaccia G, Mazzucato A, Albertini E, Zethof J, Pezzetti M, Gerats A, Falcinelli M (1998) Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theor Appl Genet 97:74–82

    Article  Google Scholar 

  • Barcaccia G, Mazzucato A, Falcinelli M (2000) Inheritance of apomictic seed production in Kentucky bluegrass (Poa pratensis L.). J New Seeds 2:43–58

    Google Scholar 

  • Barcaccia G, Varotto S, Meneghetti S, Albertini E, Porceddu A, Parrini P, Lucchin M (2001) Analysis of gene expression during flowering in apomeiotic mutants of Medicago spp: cloning of ESTs and candidate genes for 2n eggs. Sex Plant Reprod 14:233–238

    Article  CAS  Google Scholar 

  • Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96:322–334

    Article  PubMed  CAS  Google Scholar 

  • Barcaccia G, Baumlein H, Sharbel TF (2007) Apomixis in St. John's wort: an overview and glimpse towards the future. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel TF (eds) Apomixis. Evolution, mechanisms and perspectives. International Association of Plant Taxonomy, Koeltz Scientific Books, Vienna, pp 259–280

    Google Scholar 

  • Bashaw EC, Hanna WW (1990) Apomictic reproduction. In: Chapman GP (ed) Reproductive versatility in the grasses. Cambridge University Press, Cambridge, pp 100–130

    Google Scholar 

  • Bell G (1982) The masterpiece of nature. University of California Press, Berkeley, CA

    Google Scholar 

  • Berthaud J, Savidan Y, Barré M, Leblanc O (1997) Maize, Tripsacum and teosinte. In: Fucillo D, Sears L, Stapelton P (eds) Biodiversity in trust. Cambridge University Press, Cambridge, pp 227–235

    Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245

    Article  PubMed  Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11–20

    Article  PubMed  Google Scholar 

  • Bierzychudek P (1987) Patterns in plant parthenogenesis. Experientia Suppl 55:197–217

    PubMed  CAS  Google Scholar 

  • Birky-Jr CW (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437

    CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Brock MT, Weinig C, Galen CA (2005) Comparison of phenotypic plasticity in the native dandelion Taraxacum ceratophorum and its invasive congener T. officinale. New Phytol 166:173–183

    Article  PubMed  Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nature Genet 21:33–37

    Article  PubMed  CAS  Google Scholar 

  • Brown WV, Emery HP (1958) Apomixis in the Gramineae: Panicoideae. Am J Bot 45:253–263

    Google Scholar 

  • Calderini O, Chang SB, de Jong H, Busti A, Paolocci F, Arcioni S, de Vries SC, Abma-Henkens MH, Lankhorst RM, Donnison IS, Pupilli F (2006) Molecular cytogenetics and molecular sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non-precicentromere location and partial microcolinearity with rice. Theor Appl Genet 112:1179–1191

    Article  PubMed  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Peacock JW (1993) Approaches to isolating apomictic mutants in Arabidopsis thaliana: prospects and progress. In: Khush GS (ed) Apomixis: exploiting hybrid vigor in rice. International Rice Research Institute, Manila, pp 66–71

    Google Scholar 

  • Chen LZ, Miyazaki C, Kojima A, Saito A, Adachi T (1999) Isolation and characterization of a gene expressed during early embryo sac development in apomictic guinea grass (Panicum maximum). J Plant Physiol 154:55–62

    CAS  Google Scholar 

  • Chen L, Guan L, Seo M, Hoffmann F, Adachi T (2005) Developmental expression of ASG-1 during gametogenesis in apomictic guinea grass (Panicum maximum). J Plant Physiol 162:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Citterio S, Albertini E, Varotto S, Feltrin E, Soattin M, Marconi G, Sgorbati S, Lucchin M, Barcaccia G (2005) Alfalfa Mob1-like genes are expressed in reproductive organs during meiosis and gametogenesis. Plant Mol Biol 58:789–808

    Article  PubMed  CAS  Google Scholar 

  • Cnudde F, Moretti C, Porceddu A, Pezzotti M, Gerats T (2003) Transcript profiling on developing Petunia hybrida floral organs. Sex Plant Reprod 16:77–85

    Article  CAS  Google Scholar 

  • Comai L, Madlung A, Josefsson C, Tyagi A (2003) Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci 358:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Conner JA, Huo H, Albertini E, Ozias-Akins P (2007) Characterization of an apospory-specific genomic region-baby-boom gene in apomictic development in Pennisetum squamulatum. In: Abstr Vol 3rd Int Apomixis Conf, Wernigerode, Germany, p 54

    Google Scholar 

  • Corral JM, Piwczynski M, Sharbel TF (2008) Allelic sequence divergence in the apomictic Boechera holboellii complex. In: Martens K, Schön I, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Crane CF (2001) Classification of apomictic mechanisms. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixes: from mechanisms to genetic engineering. CIMMYT, IRD European Commission DG VI (FAIR), pp 24–43

    Google Scholar 

  • Curtis MD, Grossniklaus U (2007) Amphimixis and apomixis: two sides of the same coin! In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel TF (eds) Apomixis. Evolution, mechanisms and perspectives. International Association of Plant Taxonomy, Koeltz Scientific Books, Vienna, pp 37–62

    Google Scholar 

  • Donson J, Fang YW, Espiritu-Santo G, Xing WM, Salazar A, Miyamoto S, Armendarez V, Volkmuth W (2002) Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol 48:75–97

    Article  PubMed  CAS  Google Scholar 

  • do Valle CB, Glienke C, Leguizamon GOC (1994) Inheritance of apomixis in Brachiaria, a tropical forage grass. Apomixis Newslett 7:42–43

    Google Scholar 

  • Dujardin M, Hanna WW (1983) Apomictic and sexual pearl millet x Pennisetum squamulatum hybrids. J Hered 74:277–279

    Google Scholar 

  • Dujardin M, Hanna W (1984) Cytogenetics of double cross hybrids between Pennisetum americanum - P. purpureum amphiploids and P. americanum x Pennisetum squamulatum interspecific hybrids. Theor Appl Genet 69:97–100

    Article  Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977

    Article  PubMed  CAS  Google Scholar 

  • Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta SI, Takahara M, Nakajima K (2005) Co-segregation of AFLP and RAPD markers to apospory in Guineagrass (Panicum maximum Jacq.). Grassland Sci 51:71–78

    Article  CAS  Google Scholar 

  • Farquharson LI (1955) Apomixis and polyembryony in Tripsacum dactyloides. Am J Bot 42:737–743

    Article  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic cells to an embryogenic state. Plant Cell Tissue Organ Culture 74:201–228

    Article  Google Scholar 

  • Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23:192–199

    Article  PubMed  CAS  Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Physical evidence that a single hemizygous chromosomal region is sufficient to confer aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    PubMed  CAS  Google Scholar 

  • Grazi F, Umaerus M, Åkerberg E (1961) Observations on the mode of reproduction and the embryology of Poa pratensis. Hereditas 47:489–541

    Article  Google Scholar 

  • Green CD, Simons JF, Taillon BE, Lewin DA (2001) Open systems: panoramic views of gene expression. J Immunol Methods 250:67–79

    Article  PubMed  CAS  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzalez de Leon D, Savidan Y (1998) Non-Mendelian transmission of apomixis in maize-Tripsacum hybrids caused by a transmission ratio distortion. Heredity 80:40–47

    Article  PubMed  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001a) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001b) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  Google Scholar 

  • Grimanelli D, Garcia M, Kaszas E, Perotti E, Leblanc O (2003) Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 165:1521–1531

    PubMed  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Sem Cell Dev Biol 9:227–238

    Article  CAS  Google Scholar 

  • Grossniklaus U, Nogler GA, van Dijk PJ (2001a) How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13:1491–1497

    Article  Google Scholar 

  • Grossniklaus U, Spillane C, Page DR, Köhler C (2001b) Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Biol 4:21–27

    Article  Google Scholar 

  • Guitton AE, Berger F (2005) Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 49:707–716

    Article  PubMed  CAS  Google Scholar 

  • Hair JB (1956) Subsexual reproduction in Agropyron. Heredity 10:129–160

    Article  Google Scholar 

  • Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20:194

    Article  PubMed  Google Scholar 

  • Harlan JR, DeWet JMJ (1977) Pathways of genetic transfer from Tripsacum to Zea mays. Proc Natl Acad Sci USA 74:3494–3497

    Article  PubMed  Google Scholar 

  • Harlan JR, DeWet JMJ, Naik SM, Lambert RJ (1970) Chromosome pairing within genomes in maize-Tripsacum hybrids. Science 167:1247–1248

    Article  PubMed  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci USA 97:7037–7042

    Article  PubMed  CAS  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel TF (eds) Apomixis. Evolution, mechanisms and perspectives. International Association of Plant Taxonomy, Koeltz Scientific Books, Vienna, pp 169–194

    Google Scholar 

  • Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8:439–445

    Article  PubMed  CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow GB, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffelgrass as revealed by genome mapping. Crop Sci 42:1688–1694

    Article  CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow G, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2003) Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping. Genome 46:304–313

    Article  PubMed  CAS  Google Scholar 

  • Jones CS, Davies HV, Taylor MA (2000) Profiling of changes in gene expression during raspberry (Rubus idaeus) fruit ripening by application of RNA fingerprinting techniques. Planta 211:708–714

    Article  PubMed  CAS  Google Scholar 

  • Kindiger B, Sokolov V (1997) Progress in the development of apomictic maize. Trends Agron 1:75–94

    Google Scholar 

  • Kindiger B, Bai D, Sokolov V (1996) Assignment of gene(s) conferring apomixis in Tripsacum to a chromosome arm: cytological and molecular evidence. Genome 39:1139–1141

    Article  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Grossniklaus U (2005) Seed development and genomic imprinting in plants. Prog Mol Subcell Biol 38:237–262

    Article  PubMed  Google Scholar 

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1345–1352

    PubMed  Google Scholar 

  • Kondrashov AS (1994) Muller's ratchet under epistatic selection. Genetics 136:1469–1473

    PubMed  CAS  Google Scholar 

  • Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519

    Article  PubMed  Google Scholar 

  • Laspina N, Vega T, Ortiz JPA, Podio M, Stein J, Quarin CL, Echenique VC, Pessino SC (2007) Identification of genes differentially expressed in inflorescences of sexual and aposporous Paspalum notatum. In: Abstr Vol 3rd Int Apomixis Conf, Wernigerode, Germany, p 53

    Google Scholar 

  • Leblanc O, Mazzucato A (2001) Screening procedures to identify and quantify apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, pp 121–136

    Google Scholar 

  • Leblanc O, Grimanelli D, De Leon G, Savidan Y (1995a) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203

    Article  Google Scholar 

  • Leblanc O, Peel MD, Carman JG, Savidan Y (1995b) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63

    Article  Google Scholar 

  • Leblanc O, Grimanelli D, Islam-Faridi M, Berthaud J, Savidan Y (1996) Reproductive behavior in maize-Tripsacum polyhaploid plants: implications for the transfer of apomixis into maize. J Hered 87:108–111

    Google Scholar 

  • Leblanc O, Armstead I, Pessino S, Ortiz JP, Evans C, doValle C, Hayward MD (1997) Non-radioactive mRNA fingerprinting to visualise gene expression in mature ovaries of Brachiaria hybrids derived from B. brizantha, an apomictic tropical forage. Plant Sci 126:49–58

    Article  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dadhla N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  PubMed  CAS  Google Scholar 

  • Lohe AR, Chaudhury A (2002) Genetic and epigenetic processes in seed development. Curr Opin Plant Biol 5:19–25

    Article  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1931) Hybridization of maize, Tripsacum and Euchlaena. J Hered 22:339–343

    Google Scholar 

  • Marshall DR, Brown AHD (1981) The evolution of apomixis. Heredity 47:1–15

    Article  Google Scholar 

  • Martínez EJ, Urbani MH, Quarin CL, Ortiz JP (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25

    Article  PubMed  Google Scholar 

  • Matz MV, Lukyanov SA (1998) Different strategies of differential display: areas of application. Nucleic Acids Res 26:5537–5543

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Meister A, Brutovska R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Prodanovic S, Bäumlein H, Schubert I (2005) The inheritance of apomixes in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Mes THM (1998) Character compatibility of molecular markers to distinguish asexual and sexual reproduction. Mol Ecol 7:1719–1727

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli EV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  Google Scholar 

  • Miles JW, Escandon ML (1997) Further evidence on the inheritance of reproductive mode in Brachiaria. Can J Plant Sci 77:105–107

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutation Res 106:2–9

    PubMed  CAS  Google Scholar 

  • Naumova T (1992) Apomixis in angiosperms: nucellar and integumentary embryony. CRC Press, Boca Raton, FL

    Google Scholar 

  • Naumova TN, van der Laak J, Osadtchiy J, Matzk F, Kravtchenko A, Bergervoet J, Ramulu KS, Boutilier K (2001) Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae). Sex Plant Reprod 14:195–200

    Article  Google Scholar 

  • Nogler GA (1984a) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 475–518

    Google Scholar 

  • Nogler GA (1984b) Genetics of apospory in Ranunculus auricomus. Bot Helv 94:411–422

    Google Scholar 

  • Nowack MK, Shirzadi R, Dissmeyer N, Dolf A, Endl E, Grini PE, Schnittger A (2007) Bypassing genomic imprinting allows seed development. Nature 447:312–315

    Article  PubMed  CAS  Google Scholar 

  • Noyes RD (2005) Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae). Heredity 94:193–198

    Article  PubMed  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    PubMed  Google Scholar 

  • Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98:92–98

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    Article  PubMed  CAS  Google Scholar 

  • Osborn TC, Chris Pires J, Birchler JA, Auger DL, Jeffery Chen Z, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Akiyama Y, Hanna WW (2003) Molecular characterization of the genomic region linked with apomixis in Pennisetum/Cenchrus. Funct Integrat Genomics 3:94–104

    Article  CAS  Google Scholar 

  • Peacock JP (1992) Genetic engineering and mutagenesis for apomixis in rice. Apomixis Newslett 4:3–7

    Google Scholar 

  • Pessino SC, Ortiz J, Leblanc O, do Valle CB, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444

    Article  CAS  Google Scholar 

  • Pessino SC, Evans C, Ortiz JPA, Armstead I, do Valle CB, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128:153–158

    Google Scholar 

  • Pessino SC, Espinoza F, Martínez EJ, Ortiz JPA, Valle EM, Quarin CL (2001) Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum. Hereditas 134:35–42

    Article  PubMed  CAS  Google Scholar 

  • Petrov DF, Belousova NI, Fokina ES, Laikova LI, Yatsenko RM, Sorokina TP (1984) Transfer of some elements of apomixis from Tripsacum to maize. In: Petrov DF (ed) Apomixis and its role in evolution and breeding. Oxonian Press, New Delhi, pp 9–73

    Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280

    Article  PubMed  Google Scholar 

  • Pouchkina-Stantcheva NN, McGee BM, Boschetti C, Tolleter D, Chakrabortee S, Popova AV, Meersman F, Macherel D, Hincha DK, Tunnacliffe A (2007) Functional divergence of former alleles in an ancient asexual invertebrate. Science 318:268–271

    Article  PubMed  CAS  Google Scholar 

  • Pupilli F, Labombarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  Google Scholar 

  • Pupilli F, Martínez EJ, Busti A, Calderini O, Quarin CL, Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Genet Genomics 270:539–548

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL, Hanna WW, Fernandez A (1982) Genetic studies in diploid and tetraploid Paspalum species. Embryo sac development, chromosome behavior and fertility in P. cromyorrhizon, P. laxum and P. proliferum. J Hered 73:254–256

    Google Scholar 

  • Randolph LF (1970) Variation among Tripsacum populations of Mexico and Guatemala. Brittonia 22:305–337

    Article  Google Scholar 

  • Ranganath RM (2004) Harnessing the developmental potential of nucellar cells: barriers and opportunities. Trends Biotechnol 22:504–510

    Article  PubMed  CAS  Google Scholar 

  • Ravi M, Marimuthu MP, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G (2003) Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 82:606–618

    Article  PubMed  CAS  Google Scholar 

  • Reusch JDH (1961) The relationship between reproduction factors and seed set in Paspalum dilatatum. S Afr J Agric Sci 4:513–530

    Google Scholar 

  • Rice W, Friberg U (2007) Genomic clues to an ancient asexual scandal. Genome Biol 8:232

    Article  PubMed  CAS  Google Scholar 

  • Richards AJ (1996) Genetic variability in obligate apomicts of the genus Taraxacum. Folia Geobot Phytotaxon 31:405–414

    Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman and Hall, London

    Google Scholar 

  • Richards AJ (2003) Apomixis in flowering plants: an overview. Philos Trans Roy Soc Lond B Biol Sci 358:1085–1093

    Google Scholar 

  • Roche D, Cong P, Chen ZB, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P (1999) An apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19:203–208

    Article  PubMed  Google Scholar 

  • Roche DR, Hanna W, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349

    Article  Google Scholar 

  • Roche DR, Conner JA, Budiman MA, Frisch D, Wing R, Hanna WW, Ozias-Akins P (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812

    PubMed  Google Scholar 

  • Rodrigues JCM, Cabral GB, Dusi DMA, de Mello LV, Rigden DJ, Carneiro VTC (2003) Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Mol Biol 53:745–757

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg O (1907) Experimental and cytological studies in the Hieracia. II. Cytological studies on the apogamy in Hieracium. Bot Tidsskr 28:143–170

    Google Scholar 

  • Rutishauser A (1948) Pseudogamie und Polymorphie in der Gattung Potentilla. Arch Julius Klaus Stift Vererbungsforsch Sozialanthropol Rassenhyg 23:267–424

    Google Scholar 

  • Savidan YH (1982) Nature et hérédité de l'apomixie chez Panicum maximum Jacq. OSTROM, Paris, Trav Doc OSTROM 153:1–159

    Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Savidan Y, Carman JG, Dresselhaus T (2001) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, European Commission DG VI (FAIR)

    Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Schranz ME, Kantama L, de Jong H, Mitchell-Olds T (2006) Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol 171:425–438

    Article  PubMed  Google Scholar 

  • Sharbel TF, Mitchell-Olds T (2001) Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). Heredity 87:59–68

    Article  PubMed  CAS  Google Scholar 

  • Sharbel TF, Voigt M-L, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58:870–882

    Article  PubMed  CAS  Google Scholar 

  • Sherwood RT, Berg CC, Young BA (1994) Inheritance of apospory in buffelgrass. Crop Sci 34:1490–1494

    Article  Google Scholar 

  • Spillane C, Stimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Paszkowski J (2006) DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 115:27–35

    Article  PubMed  CAS  Google Scholar 

  • Tas ICQ, van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707–714

    Article  PubMed  Google Scholar 

  • Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt EDL, Rossell JB, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Vandel A (1928) La parthénogenèse géographique. Contribution à l'étude biologique et cytologique de la parthénogenèse naturelle. Bull Biol France Belgique 62:164–281

    Google Scholar 

  • van Dijk P, Bakx-Schotman J (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale) is controlled by a sex-specific dominant locus. Genetics 166:483–492

    PubMed  Google Scholar 

  • van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721

    Article  PubMed  Google Scholar 

  • van Dijk PJ, van Baarlen P, de Jong JH (2003) The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod 16:71–76

    Article  Google Scholar 

  • Vielle-Calzada JP, Nuccio ML, Budiman MA, Thomas TL, Burson BL, Hussey MA, Wing RA (1996) Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L) Link. Plant Mol Biol 32:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada JP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982

    Article  PubMed  CAS  Google Scholar 

  • Vijverberg K, van Dijk P J (2007) Genetic linkage mapping of apomixis loci. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel TF (eds) Apomixis. Evolution, mechanisms and perspectives. International Association of Plant Taxonomy, Koeltz Scientific Books, Vienna, pp 137–158

    Google Scholar 

  • Vijverberg K, Van der Hulst RGM, Lindhout P, van Dijk PJ (2004) A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108:725–732

    Article  PubMed  CAS  Google Scholar 

  • Vilà M, Gómez A, Maron J (2003) Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L. Oecologia 137:211–215

    Article  PubMed  Google Scholar 

  • Voigt ML, Melzer M, Rutten T, Mitchell-Olds T, Sharbel TF (2007) Gametogenesis in the apomictic Boechera holboellii complex: the male perspective. In: Hörandl E, Grossniklaus U, Van Dijk P, Sharbel TF (eds) Apomixis. Evolution, mechanisms and perspectives. International Association of Plant Taxonomy. Koeltz Scientific Books, Vienna, pp 235–258

    Google Scholar 

  • Welch JLM, Welch DBM, Meselson M (2004) Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proc Natl Acad Sci USA 101:1618–1621

    Article  CAS  Google Scholar 

  • Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Albertini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albertini, E., Barcaccia, G., Mazzucato, A., Sharbel, T.F., Falcinelli, M. (2010). Apomixis in the Era of Biotechnology. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_20

Download citation

Publish with us

Policies and ethics