Skip to main content
Log in

A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In this study, we mapped the diplosporous chromosomal region in Taraxacum officinale, by using amplified fragment length polymorphism technology (AFLP) in 73 plants from a segregating population. Taraxacum serves as a model system to investigate the genetics, ecology, and evolution of apomixis. The genus includes sexual diploid as well as apomictic polyploid, mostly triploid, plants. Apomictic Taraxacum is diplosporous, parthenogenetic, and has autonomous endosperm formation. Previous studies have indicated that these three apomixis elements are controlled by more than one locus in Taraxacum and that diplospory inherits as a dominant, monogenic trait (Ddd; DIP). A bulked segregant analysis provided 34 AFLP markers that were linked to DIP and were, together with two microsatellite markers, used for mapping the trait. The map length was 18.6 cM and markers were found on both sides of DIP, corresponding to 5.9 and 12.7 cM, respectively. None of the markers completely co-segregated with DIP. Eight markers were selected for PCR-based marker development, of which two were successfully converted. In contrast to all other mapping studies of apomeiosis to date, our results showed no evidence for suppression of recombination around the DIP locus in Taraxacum. No obvious evidence for sequence divergence between the DIP and non-DIP homologous loci was found, and no hemizygosity at the DIP locus was detected. These results may indicate that apomixis is relatively recent in Taraxacum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217

    Article  Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Birky CW Jr. (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437

    PubMed  Google Scholar 

  • Brugmans B, Van der Hulst R, Visser RGF, Lindhout P, Van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31:e55

    Article  PubMed  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, De Leon DG, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39

    Article  PubMed  Google Scholar 

  • Grossniklaus U (2001) From sexuality to apomixis: molecular and genetic approaches. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanism to genetic engineering. European Commission DG VI (FAIR), pp168–211

  • Grossniklaus U, Nogler GA, Van Dijk PJ (2001) How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13:1491–1497

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson Å (1934) Primary and secondary association in Taraxacum. Hereditas 20:1–31

    Google Scholar 

  • Gustine DL, Sherwood RT, Huff DR (1997) Apospory-linked molecular markers in buffalograss. Crop Sci 37:947–951

    CAS  Google Scholar 

  • Juel O (1900) Vergleichende Untersuchungen über typische und parthenogenetische Fortpflanzung bei der Gattung Antennaria. K Sven Vetenskapsakad Handl 33:1–59

    Google Scholar 

  • Juel O (1906) Die Tetradenteilung bei Taraxacum und anderen Cichorieen. K Sven Vetenskapsakad Handl 39:1–21

    Google Scholar 

  • Koltunow AM (1993) Apomixis - embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed  Google Scholar 

  • Kondrashov AS (1982) Selection against harmful mutations in large sexual and asexual populations. Genet Res 40:325–332

    CAS  PubMed  Google Scholar 

  • Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519

    Article  CAS  PubMed  Google Scholar 

  • Leblanc O, Grimanelli D, Gonzalez de Leon D, Savidan Y (1995) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203

    CAS  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Maynard-Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  Google Scholar 

  • Muller HJ (1964) The relation between recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Nogler GA (1984) Embryology of angiosperms. In: Johri BM (ed) Gametophytic embryogenesis. Springer, Berlin Heidelberg New York, pp 475–518

  • Noyes RD (2000) Diplospory and parthenogenesis in sexual x agamospermous (apomictic) Erigeron (Asteraceae) hybrids. Int J Plant Sci 161:1–12

    Article  PubMed  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    Google Scholar 

  • Okabe S (1932) Parthenogenesis bei Ixeris dentata. Bot Mag (Tokyo) 46:518–523

    Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    CAS  PubMed  Google Scholar 

  • Paran I, RW Michelmore (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  Google Scholar 

  • Pessino SC, Ortiz JPA, Leblanc O, Do Valle CB, Evans C, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444

    Article  CAS  Google Scholar 

  • Pessino SC, Evans C, Ortiz JPA, Armstead I, Do Valle CB, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128:153–158

    Google Scholar 

  • Pupilli F, Labombarda P, Caceres ME, Quarin,CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. Chapman and Hall, London

  • Rogstad SH (1992) Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708

    Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Sørensen T (1958) Sexual chromosome aberrants in triploid apomictic Taraxaca. Bot Tidskr 54:1–22

    Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  Google Scholar 

  • Stearns SC (1987) The evolution of sex and its consequences. Birkhäuser, Basel

  • Tas ICQ, Van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum) I: the inheritance of apomixis. Heredity 83:707–714

    Article  PubMed  Google Scholar 

  • Van Baarlen P, Verduijn M, Van Dijk PJ (1999) What can we learn from natural apomicts? Trends Plant Sci 4:43–44

    Article  Google Scholar 

  • Van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc Lond B Biol Sci 358:1113–1121

    Article  PubMed  Google Scholar 

  • Van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum) II: the breakdown of apomixis. Heredity 83:715–721

    PubMed  Google Scholar 

  • Van Dijk PJ, Bakx-Schotman JMT (2003) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlled by a sex-specific dominant locus. Genetics (in press)

  • Vielle-Calzada JP, Crane CF, Stelly DM (1996) Apomixis: the asexual revolution. Science 274:1322–1323

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: A new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Welch DM, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Hydrobiologia 446:333–336

    Article  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Google Scholar 

Download references

Acknowledgements

This research is part of the European Union funded project: “Natural apomixis as a novel tool in plant breeding (ApoTool)”, contract number QLG2-2000-00603 of the Quality of Life and Management of Living Resources section. This paper corresponds to publication number 3225 of the Netherlands Institute of Ecology (NIOO-KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijverberg.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijverberg, K., Van der Hulst, R.G.M., Lindhout, P. et al. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108, 725–732 (2004). https://doi.org/10.1007/s00122-003-1474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1474-y

Keywords

Navigation