Skip to main content
Log in

The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale)

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Apomictic seed development in dandelion (Taraxacum officinale) involves (1) restitutional meiosis (diplospory), (2) egg cell parthenogenesis, and (3) autonomous endosperm development. The question is whether these elements of apomixis are controlled by one single gene or by several independent genes. Five triploid non-apomictic hybrids, obtained in diploid sexual × triploid apomict crosses were characterized using cyto-embryological and genetic methods. Nomarski-differential interference contrast microscopy and the transmission of microsatellite markers and ploidy levels indicated that the hybrids combined elements of the apomictic and the sexual developmental pathway. Hybrids form two complementary groups with respect to the presence or absence of parthenogenesis and autonomous endosperm development. The occurrence of complementary apomixis-recombinants suggests that parthenogenesis and autonomous endosperm development in Taraxacum are regulated independently by different genes. This study also indicates that early embryo development is independent of endosperm formation, but that endosperm is essential for later embryo growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–F.
Fig. 3.

Similar content being viewed by others

References

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, Fla.

  • Bicknell R, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  CAS  PubMed  Google Scholar 

  • Cooper DC, Brink RA (1949) The endosperm-embryo relationship in an autonomous apomict, Taraxacum officinale. Bot Gaz 111:139–153

    Article  Google Scholar 

  • Falque M, Keurentjes J, Bakx-Schotman JMT, Van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Genet 97:283–292

    CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb-group gene in Arabidopsis. Science 280:446–450

    CAS  PubMed  Google Scholar 

  • Gustafsson Å (1947a) Apomixis in angiosperms II. Lunds Univ Årsskr Avd 2 42:71–179

  • Gustafsson Å (1947b) Apomixis in angiosperms III. Lunds Univ Årsskr Avd 2 43:183–370

  • Harlan JR, DeWet JMJ (1975) On Ö. Winge and a prayer: The origins of polyploidy. Bot Rev 41:361–390

    Google Scholar 

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed  Google Scholar 

  • Mogie M (1988) A model for the evolution and control of generative apomixis. Biol J Linn Soc 35:127–153

    Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

  • Nawaschin S (1898) Resultate einer revision der befruchungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Sci Acad Imp Sci St.-Petersbourg 33:39–47

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 475–518

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    CAS  PubMed  Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    Article  CAS  PubMed  Google Scholar 

  • Richards AJ (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol 69:761–774

    Google Scholar 

  • Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211

    Google Scholar 

  • Rogstad SH (1992) Saturated NaCl-CTAB solutions as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708

    Google Scholar 

  • Sherwood RT (2001) Genetic analysis of apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, European Commission DG VI (FAIR), Mexico, pp 64–82

  • Sørensen T (1958) Sexual chromosome-aberrants in triploid apomictic Taraxaca. Bot Tidskr 54:1–22

    Google Scholar 

  • Sørensen T, Gudjónsson, G (1946) Spontaneous chromosome-aberrants in triploid apomictic Taraxaca. K Dan Vidensk Selsk Biol Skr 4:3–48

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

  • Tas ICQ, Van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707–714

    Article  PubMed  Google Scholar 

  • Van Baarlen P, van Dijk PJ, Hoekstra RF, De Jong JH (2000) Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.). Genome 43:827–835

    Article  PubMed  Google Scholar 

  • Van Baarlen P, De Jong JH, Van Dijk PJ (2002) Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids. Sex Plant Reprod 15:31–38

    Article  Google Scholar 

  • Van Dijk PJ, Van Damme JMM (2000) Apomixis-technology and the paradox of sex. Trends Plant Sci 5:81–84

    Article  PubMed  Google Scholar 

  • Van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman JMT (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721

    PubMed  Google Scholar 

  • Vielle-Calzada J-P, Crane CF, Stelly DM (1996) Apomixis. The asexual revolution. Science 274:1322–1323

    Article  Google Scholar 

  • Willemse MTM, Van Went JL (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 156–196

Download references

Acknowledgement

We thank Tanja Bakx-Schotman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. van Dijk.

Additional information

P.J. van Dijk and P. van Baarlen contributed equally to this paper. Publication 3136 NIOO-KNAW Netherlands Institute of Ecology

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dijk, P.J., van Baarlen, P. & de Jong, J.H. The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod 16, 71–76 (2003). https://doi.org/10.1007/s00497-003-0177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-003-0177-5

Keywords

Navigation