Skip to main content

Abstract

A plant breeder faces the challenge of how to more effectively and efficiently perform selection and accelerate the breeding progress to satisfy the requirements of changing markets for crop cultivars. Molecular marker-assisted breeding (MAB), the application of molecular biotechnologies (DNA markers) to practical breeding and selection, is a novel strategy and a powerful methodology for plant improvement. It has significant advantages compared with conventional breeding methods. Since the 1990s MAB has received increasingly attention and has been extensively used in different crop species. From a plant breeder’s point of view, this chapter addresses the general procedures, theoretical and practical considerations of MAB in plants, including marker-assisted selection (MAS), marker-assisted backcrossing (MABC), marker-assisted gene pyramiding (MAGP), marker-assisted recurrent selection (MARS) and genomewide selection (GWS). Applications of individual MAB methods to practical breeding as well as widely used DNA markers are briefly reviewed, and the challenges and perspectives of MAB are discussed. As a new technology, MAB is not a replacement for but a valued supplement to conventional breeding. Integration of MAB into conventional breeding programs represents an optimistic strategy for future crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publishing, USA

    Google Scholar 

  • Anderson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47S:112–119

    Google Scholar 

  • Asoro FG, Newell MA, Beavis WD et al (2013) Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci 53:1894–1906

    Article  CAS  Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding – Prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Babu R, Nair SK, Kumar A et al (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D et al (1998) Advanced backcross QTL analysis of tomato: II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180

    Article  CAS  Google Scholar 

  • Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Bilyeu K, Palavalli L, Sleper DA, Beuselinck P (2006) Molecular genetic resources for development of 1 % linolenic acid soybeans. Crop Sci 46:1913–1918

    Article  CAS  Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ et al (2005a) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  PubMed  CAS  Google Scholar 

  • Bradbury LMT, Henry RJ, Jin Q et al (2005b) A perfect marker for fragrance genotyping in rice. Mol Breed 16:279–283

    Article  CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Castro AJ, Capettini F, Corey AE et al (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  PubMed  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P et al (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    PubMed  CAS  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW et al (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99:811–818

    Article  CAS  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR et al (2006) Plant breeding: past, present and future. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international symposium. Blackwell Publishing, Oxford, pp 3–50

    Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi SL, Crouch JH, Mackill DJ et al (2007) The molecularization of public sector crop breeding: progress, problems and prospects. Adv Agron 95:163–318

    Article  CAS  Google Scholar 

  • Eathington SR (2005) Practical applications of molecular technology in the development of commercial maize hybrids. In: Proceedings of the 60th Annual Corn and Sorghum Seed Research Conferences, American Seed Trade Association, Washington, DC

    Google Scholar 

  • Edwards D, Forster JW, Chagne D, Batley J (2007) What is SNPs? In: Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (eds) Association mapping in plants. Springer, Berlin, pp 41–52

    Chapter  Google Scholar 

  • Farooq S, Azam F (2002a) Molecular markers in plant breeding-I: Concepts and characterization. Pak J Biol Sci 5:1135–1140

    Article  Google Scholar 

  • Farooq S, Azam F (2002b) Molecular markers in plant breeding-II: Some pre-requisites for use. Pak J Biol Sci 5:1141–1147

    Article  Google Scholar 

  • Fehr WR (1991) Principles of cultivar development vol. 1: Theory and technique. MacMillan Publishing Company, USA

    Google Scholar 

  • Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107:1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301 (See also Errata, Frisch et al. 1999. Crop Sci 39:1903)

    Google Scholar 

  • Fulton TM, Bucheli P, Voirol E et al (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Tucker DM, Liu J et al (2011) Evaluation of genomewide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275

    Article  PubMed  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hallauer AR (1992) Recurrent selection in maize. Plant Breed Rev 9:115–179

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Iwata H et al (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing and CRC Press, Oxford/Boca Raton, pp 30–59

    Google Scholar 

  • Hospital F, Decoux G (2002) Popmin: a program for the numerical optimization of population sizes in marker-assisted backcross breeding programs. J Hered 93:383–384

    Article  PubMed  CAS  Google Scholar 

  • Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 231:1199–1210

    Google Scholar 

  • Huang N, Angeles ER, Domingo J et al (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  PubMed  CAS  Google Scholar 

  • Jefferies SP, King BJ, Barr AR et al (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed 122:52–56

    Article  CAS  Google Scholar 

  • Jiang G-L (2013a) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Croatia, pp 45–83

    Google Scholar 

  • Jiang G-L (2013b) Plant marker-assisted breeding and conventional breeding: challenges and perspectives. Adv Crop Sci Tech 1, e106. doi:10.4172/acst.1000e106

    Google Scholar 

  • Jiang G-L, Wu Z-S, Huang D-C (1994) Effects of recurrent selection for resistance to scab (Gibberella zeae) in wheat. Euphytica 72:107–113

    Article  Google Scholar 

  • Jiang G-L, Dong Y, Shi J, Ward RW (2007a) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043–1052

    Article  PubMed  Google Scholar 

  • Jiang G-L, Shi J, Ward RW (2007b) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116:3–13

    Article  PubMed  CAS  Google Scholar 

  • Johnson R (2004) Marker assisted selection. In: Jannick J (ed) Plant breeding reviews, vol 24, Part 1., pp 293–309

    Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding – a broad spectrum technique for developing durable stress resistance in crops. Biotech Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Konieczny A, Ausubel F (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Kumpatla SP, Buyyarapu R, Abdurakhmonov IY, Mammadov JA (2012) Genomics-assisted plant breeding in the 21st century: technological advances and progress. In: Abdurakhmonov IY (ed) Plant breeding. InTech, Rijeka, Croatia, pp 131–184

    Google Scholar 

  • Lecomte L, Duffé P, Buret M et al (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:568–668

    Article  CAS  Google Scholar 

  • Li X, Han Y, Teng W et al (2010) Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environment from soybean cultivar ‘Conrad’ and ‘Hefeng 25’. Theor Appl Genet 121:651–658

    Article  PubMed  Google Scholar 

  • Liu B-H (1991) Development and prospects of dwarf male-sterile wheat. Chin Sci Bull 36(4):306

    Google Scholar 

  • Lorenzana RF, Bernardo R (2009) Accuracy of genotypic predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Luo Y, Yin Z (2013) Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergence tolerance and disease resistance to rice blast and bacterial blight. Mol Breed 32:709–721

    Article  CAS  Google Scholar 

  • Luo Y, Sangha JS, Wang S et al (2012) Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol Breed. doi:10.1007/s11032-012-9742-7

    Google Scholar 

  • Massman JM, Jung H-JG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66

    Article  CAS  Google Scholar 

  • Meuwissen T (2007) Genomic selection: marker assisted selection on a genomewide scale. J Anim Breed Genet 124:321–322

    Article  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genomewide dense marker maps. Genetics 157:1819–1829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miedaner T, Wilde F, Steiner B et al (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  PubMed  CAS  Google Scholar 

  • Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148:1353–1365

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mullis K (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–61, 64–65

    Article  PubMed  CAS  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot. doi:10.1093/aob/mcs109

    PubMed Central  PubMed  Google Scholar 

  • Newbury HJ (2003) Plant molecular breeding. Blackwell Publishing/CRC Press, Birmingham

    Google Scholar 

  • Payne PI, Nigtingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    Article  CAS  Google Scholar 

  • Pham A-T, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    Article  PubMed  CAS  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Ragot M, Biasiolli M, Dekbut MF et al (1995) Marker-assisted backcrossing: a practical example. In: Berville A, Tersac M (eds) Les Colloques, vol 72. INRA, Paris, pp 45–46

    Google Scholar 

  • Ragot M, Gay G, Muller JP, Durovray J (2000) Efficient selection for the adaptation to the environment through QTL mapping and manipulation in maize. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CIMMYT, Mexico, pp 128–130

    Google Scholar 

  • Ribaut JM, Betran J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541

    Article  Google Scholar 

  • Ribaut JM, Edmeades G, Perotti E, Hoisington D (2000) QTL analysis, MAS results and perspectives for drought-tolerance improvement in tropical maize. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CIMMYT, Mexico, pp 131–136

    Google Scholar 

  • Ribaut JM, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565

    Article  Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:1–6

    Article  Google Scholar 

  • Richardson KL, Vales MI, Kling JG et al (2006) Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theor Appl Genet 113:485–495

    Article  PubMed  CAS  Google Scholar 

  • Rogers WJ, Payne PI, Harinder K (1989) The HMW glutenin subunit and gliadin compositions of German-Grown wheat varieties and their relationship with bread-making quality. Plant Breed 103:89–100

    Article  CAS  Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444

    Article  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006a) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006b) Progress and prospects of marker assisted backcrossing as a tool in crop breeding programs. Afr J Biotechnol 5:2588–2603

    CAS  Google Scholar 

  • Servin B, Hospital F (2002) Optimal positioning of markers to control genetic background in marker-assisted backcrossing. J Hered 93:214–217

    Article  PubMed  CAS  Google Scholar 

  • Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shi A, Chen P, Li D et al (2009) Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol Breed 23:113–124

    Article  CAS  Google Scholar 

  • Singh S, Sidhu JS, Huang N et al (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    Article  CAS  Google Scholar 

  • Sobrino B, Briona M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Thomas J, DePauw R et al (2005) Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theor Appl Genet 111:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Song Q, Jia G, Zhu Y et al (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8(1), e54985

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection and genomics to increase crop yield potential. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio Technology 7:257–263

    Article  CAS  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wan B, Zha Z, Li J et al (2014) Development of elite rice restorer lines in the genetic background of R022 possessing tolerance to brown planthopper, stem borer, leaf folder and herbicide through marker-assisted breeding. Euphytica 195:129–142

    Article  CAS  Google Scholar 

  • Wang B, Chee PW (2010) Application of advanced backcross quantitative trait locus (QTL) analysis in crop improvement. J Plant Breed Crop Sci 2:221–232

    CAS  Google Scholar 

  • Wang X, Jiang G-L, Green M et al (2012) Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed 30:1163–1179

    Article  Google Scholar 

  • Wang X, Jiang G-L, Green M et al (2014a) Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Mol Breed 33:281–296

    Article  CAS  Google Scholar 

  • Wang X, Jiang G-L, Green M et al (2014b) Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol Genet Genomics 289:935–949. doi:10.1007/s00438-014-0865-x

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Jiang G-L, Song Q et al (2015) Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean. Euphytica 201:293–305. doi:10.1007/s10681-014-1223-0

    Article  CAS  Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  PubMed  CAS  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CAB International, Wallingford, UK/Cambridge, MA

    Google Scholar 

  • Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10

    Article  Google Scholar 

  • Yi C, Guo W, Zhu X et al (2004) Pyramiding breeding by marker-assisted recurrent selection in upland cotton II. Selection effects on resistance to Helicoverpa armigera. Sci Agric Sin 37:801–807

    Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Jiang G-L (2015) Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet. doi:10.1007/s00122-015-2614-x

    Google Scholar 

  • Zhao X, Tan G, Xing Y et al (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed. doi:10.1007/s11032-011-9694-3

    Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, GL. (2015). Molecular Marker-Assisted Breeding: A Plant Breeder’s Review. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_15

Download citation

Publish with us

Policies and ethics