Skip to main content

Genomics Approaches to Crop Improvement in the Rosaceae

  • Chapter
Genetics and Genomics of Rosaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

Genomic research in Rosaceae crops is commonly directed at understanding the genetic control of important agronomic traits with the aim of improving product quality and reducing production costs. Genomic knowledge can be used for genetic improvement of cultivars through breeding or genetic engineering. Genomic knowledge can also be used for the development of new cultural practices and the tailoring of existing production practices according to genetic categories of cultivars. The translation of genomic data and fundamental discoveries into practical results with real world applications is often termed “translational genomics”. However, the term is also used to describe the transfer of genomic knowledge from model organisms, such as Arabidopsis, to crop species, with practical application sometimes only implied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm R, Ekefjärd A, Krogh M, Häkkinen J, Emanuelsson C (2007). Proteomic variation is as large within as between strawberry varieties. J. Proteome Res. 6 : 3011–3020

    Article  PubMed  CAS  Google Scholar 

  • Aranzana MJ, Carbo J, Arus P (2003). Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor. Appl. Genet. 106:1341–1352

    CAS  PubMed  Google Scholar 

  • Bailey JS, French AP (1949). The inheritance of certain fruit and foliage characteristics in the peach. Mass. Agr. Expt. Sta. Bul. 452

    Google Scholar 

  • Baldi P, Patocchi A, Zini E, Toller C, Velaso R, Komjanc M (2004). Cloning and linkage mapping of resistance gene homologues in apple. Theor. Appl. Genet. 109:231–239

    Article  CAS  PubMed  Google Scholar 

  • Balogh A, Koncz T, Tisza V, Kiss E, Heszky L (2005). The effect of 1-MCP on the expression of several ripening-related genes in strawberries. HortScience 40:2088–2090

    CAS  Google Scholar 

  • Ban Y, Honda C, Bessho H, Pang X-M, Moriguchi T (2007). Suppression subtractive hybridization identifies genes induced in response to UV-13 irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. J. Exp. Bot. 58:1825–1834

    Article  CAS  PubMed  Google Scholar 

  • Bassett CA, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrell RE Jr (2006). Global analysis of genes regulated by low temperature and photoperiod in peach bark. J. Am. Soc. Hort. Sci. 131:551–563

    CAS  Google Scholar 

  • Beavis, W.D., Grant, D. Albertsen, M. and Fincher, R. 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141–145

    Article  Google Scholar 

  • Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE (2008). Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161: 85–96

    Article  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000). Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and stunts growth. Phytopathology 90: 72–77

    Article  CAS  PubMed  Google Scholar 

  • Brown PTH, Lang FD, Lorz H (1992) Molecular changes in tissue culture-derived plants. Adv. Mol. Genet. 5:171–195

    CAS  Google Scholar 

  • Brummell DA, Balint-Kurti, Harpster MH, Payly JM, Oeller PW, Gutterson N (2003) Inverted repeat of a heterologous 3’-untranslated region for high-efficiency, high-throughput gene silencing. Plant J. 33:793–880

    Article  CAS  PubMed  Google Scholar 

  • Calenge F, Drouet D, Denance C, Van de Weg WE, Brisset M-N, Paulin JP, Durel CE (2005). Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor. Appl. Genet. 111:128–135

    Article  CAS  PubMed  Google Scholar 

  • Callahan AM, Scorza R, Bassett C, Nickerson M, Abeles FB (2004). Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Func. Plant Biol. 31:159–168

    Article  CAS  Google Scholar 

  • Callahan AM, Dardick CD, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2008) Gene Expression Profiling Of Peach Fruit During Stone Development. Plant & Animal Genomes XVI Conference, 2008 http://www.intl-pag.org/16/abstracts/PAG16_P07a_716.html

  • Campalans A, Pages M, Nesseguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol. 21:633–643

    CAS  PubMed  Google Scholar 

  • Chagne D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007). Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212

    Article  PubMed  CAS  Google Scholar 

  • Chevreau E, Bell R (2005) Rosaceae: Pyrus spp. Pear and Cydonia spp. Quince. In: Litz RE (ed) Biotechnology of fruit and nut crops, CABI Publishing, Wallingford and Cambridge, MA, pp 543–565

    Chapter  Google Scholar 

  • Constantin GD, Gronlund M, Johansen IE, Stougaard J, Lund OS (2008) Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. Mol. Plant Microbe Interact. 21:720–727

    Article  CAS  PubMed  Google Scholar 

  • Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Costa F, van de Weg WE., Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008). Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus x domestica Borkh.) and pear (Pyrus communis). Tree Genet. Genomes 4:575–586

    Article  Google Scholar 

  • Crisosto CH, Mitchell FG, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34: 1116–1118

    Google Scholar 

  • Dandekar AM (2002) Introduction and expression of transgenes in apples. In: Khachatourians GC, McHughen A, Scorza R, Nip W-K, Hui YH (eds) Transgenic plants and crops, Marcel Dekker, Inc., New York and Basel, pp 327–344

    Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004). Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res. 13:373–384

    Article  CAS  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kurkcuoglu S, Szankowski I, Gau AE (2005). Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol. Gen. Genet. 273: 326–335

    CAS  Google Scholar 

  • Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor. Appl. Genet. 103:316–322

    Article  CAS  Google Scholar 

  • Diatchenko L, Lau YFC, Campbel AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E, Siebert PD (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93: 6025–6030

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howard W, Arus P (2004). Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc. Natl. Acad. Sci. USA 101:9891–9896

    Article  CAS  PubMed  Google Scholar 

  • Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today and tomorrow. Plant Physiol. 147:456–468

    Article  CAS  PubMed  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002). Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 105: 145–159

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002). Metabolomics – the link between genotype and phenotype. Plant Mol. Biol. 48: 155–171

    Article  CAS  PubMed  Google Scholar 

  • Filipecki M and Malepszy S (2006) Unintended consequences of plant transformation: A molecular insight. J. Appl. Genet. 47:277–286

    Article  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007). Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breeding 126:137–145

    Article  CAS  Google Scholar 

  • Folta KM (2006). Transformation of strawberry: the basis from translation genomics in Rosaceae. In Vitro Cell. Devel. Biol. Plant 42:482–490

    Article  CAS  Google Scholar 

  • Fridman E, Pichersky E (2005). Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr. Opin. Plant Biol. 8: 242–248

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Gonzales DO, Thimmapuram J, Malnoy M, Gong G, Han Y, Vodkin LO, Liu L, Aldwinckle HS, Carroll N, Orvis K, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Korban SS (submitted) Comparative analysis and functional annotation of a large expressed sequence taf collection of apple (Malus x domestica)

    Google Scholar 

  • Geuna F, Banfi R, Bassi D (2007). Identification and characterization of transcripts differentially expressed during development of apricot (Prunus armeniaca L.) fruit. Tree Genet Genomes 1:69–78

    Article  Google Scholar 

  • Gianfranceschi L, Soglio V (2004). The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Horticult. 663:327–330

    Google Scholar 

  • Godge MR, Purkayastha A, Dasgupta I, Kumar PP (2008) Virus-induced gene silencing for functional analysis of selected genes. Plant Cell. Rep. 27:209–219

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137: 1121–1137

    CAS  PubMed  Google Scholar 

  • Grimplet J, Romieu C, Sauvage FX, Lambert P, Audergon JM, Terrier N (2004). Transcriptomics and proteomics tools towards ripening markers for assisted selection in apricot. Acta Horticult. 663: 291–296

    Google Scholar 

  • Guarino C, Arena S, De Simone L, D’ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M (2007). Proteomic analysis of the major soluble components in Annurca apple flesh. Mol. Nut. Food Res. 51 : 255–262

    Article  CAS  Google Scholar 

  • Hadfield KA, Bennett AB (1998). Polygalacturonases: many genes in search of a function. Plant Physiol. 117:337–343

    Article  CAS  PubMed  Google Scholar 

  • Halász J, Hegedus A, Hermán R, Stefanovits-Bányai É, Pedryc A (2005). New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica 145:57–66

    Article  CAS  Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE, Korban S (2007). A BAC-based physical map of the apple genome. Genomics 89:630–637

    Article  CAS  PubMed  Google Scholar 

  • Helliwill CA, Wesoey SV, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct. Plant Biol. 29:1217–1225

    Article  Google Scholar 

  • Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J. 48:818–826

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005). Candidate gene database and transcript map for peach, a model species for fruit trees. Theor. Appl. Genet. 110:1419–1428

    Article  PubMed  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG (2005). Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Jensen P, Rytter J, Detwiler EA, Travis JW, NcNellis TW (2003). Rootstock effects on gene expression patterns in apple tree scions. Plant Mol. Biol. 53:493–511

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008). GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res., 36(Database issue): D1034–D1040

    Article  CAS  PubMed  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G-Q, Nehra NS Lu CY, Dyson BK, Tsuda S, Ashikar R, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavanoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Kellerhals M, Eigenmann C (2006). Evaluation of apple fruit quality within the EU project HiDRAS. In: M Boos (ed) Ecofruit – 12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing: Proceedings to the Conference, pp 165–171

    Google Scholar 

  • Kellerhals M, Sauer C, Guggenbuehl B, Gantner S, Frey B, Frey JE, Patocchi A, Gessler C (2004). Apple breeding for high fruit quality and durable disease resistance. Acta Horticult. 663: 751–756

    Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006). QTL mapping of fire blight resistance in apple. Mol. Breed 17:299–306

    Article  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998). Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:345–370

    Article  CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006). Antisense expression of MdTFL1-like gene, reduces the juvenile phase in apple. J. Am. Soc. Horticult. Sci. 131:74–81

    CAS  Google Scholar 

  • Kuerkcueoglu S, Degenhardt J, Lensing J, Al-Masri A-N, Gua AE (2007). Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. J. Exp. Bot. 58:733–741

    Article  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005). Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor. Appl. Genet. 111:1504–1513

    Article  CAS  PubMed  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005). ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6(Supple 4):S16 doi:10.1186/1471-2105-6-S4–S16

    Google Scholar 

  • Lester DR, Speirs J, Orr G, Brady CJ (1994). Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol. 105: 225–231

    Article  CAS  PubMed  Google Scholar 

  • Lester DR, Sherman WB, Atwell BJ (1996). Endopolygalacturonase and the melting flesh (M) locus in peach. J. Am. Soc. Hort. Sci. 121: 231–235

    CAS  Google Scholar 

  • Li C, Sasaki N, Isogai M, Yoshikawa N (2004). Stable expression of foreign proteins in herbaceous and apple plants using Apple latent spherical virus RNA2 vectors. Arch Virol. 149:1541–1558

    CAS  PubMed  Google Scholar 

  • Mackay TFC (2004). The genetic architecture of quantitative traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14:253–257

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Reynoird JP, Borejsza-Wysocka E, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 Promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Transgenic Res. 15:83–93

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka E, He SY, Aldwinckle HS (2007) Overexpresssion of the apple MpNRP1 gene confers increased disease resistance in Malus x domestica

    Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban S, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequlais inciting apple scab disease. Mol. Plant Microbe Interact 21: 448–458

    Article  CAS  PubMed  Google Scholar 

  • Martin RR (2002). Genetic engineering of strawberries and raspberries. In: Khachatourians GC, McHughen A, Scorza R, Nip W-K, Hui YH (eds) Transgenic plants and crops, Marcel Dekker, Inc., New York and Basel, pp 449–464

    Google Scholar 

  • Mathews L (2004). RNAi for plant functional genomics. Comp. Funct. Genom. 5: 240–244

    Article  CAS  Google Scholar 

  • Mishiba KI, Nishihara M, Nakatsuka T, Abe Y, Hirano H, Yokoi T, Kikuchi A, Yamamura S (2005) Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J. 44:541–556

    Article  CAS  PubMed  Google Scholar 

  • NCBI EST Database (2008). National Center for Biotechnology Information, Bethesda. http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucest Cited 6 Jul 2008

  • Newcomb RD, CrowHurst RN, Gleave AP, Rikkerink HA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross, GS, Snowden KC, Souleyre EJF, Walton EF Yauk Y-K (2006). Analyses of expressed sequence tags from apple. Plant Physiol. 141: 147–166

    Article  PubMed  Google Scholar 

  • Norelli JL, Bassett, C, Artlip T, Aldwinckle HS, Malnoy M, Borejsza-Wysocka EE, Gidoni D, Glaishman M (2007) Inducible DNA promoters for use in apple. Acta Horticult. 738: 329–334

    CAS  Google Scholar 

  • Norelli JL, Farrell RE Jr, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME (2008a) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics and Genomes: doi: 10.1007/sl1295-008-0164-y

    Google Scholar 

  • Norelli JL, Gardiner SE, Malnoy M, Aldwinckle HS, Baldo AM, Borejsza-Wysocka E, Farrell RE Jr, Lalli DA, Celton J-M, Bassett CL, Korban SS, Wisniewki ME (2008b). Using functional genomics to develop tools to breed fire blight resistant apple. Plant & Animal Genomes XVI Conference 2008 http://intl-pag.org/16/abstracts/PAG16_P05h_455.html

  • Ogundiwin EA, Peace CP, Gradziel TM, Dandekar AM, Bliss FA, Crisosto CH (2007). Molecular genetic dissection of chilling injury in peach fruit. Acta Horticult. 738:633–638

    Google Scholar 

  • Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008). Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage flesh browning in peach. Tree Genet. Genom. 4:543–554

    Article  Google Scholar 

  • Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, van der Knaap E, Iezzoni AF (2008). Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map Tree Genet. Genom. DOI 10.1007/s11295-008-0161-1

    Google Scholar 

  • Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Oraguzie NC, Wilcox PL (2007). An overview of association mapping. In: N Oraguzie, EHA Rikkerink, SE Gardiner, and HN De Silva (eds) Association Mapping in Plants. Springer Verlag, New York, pp. 1–9

    Chapter  Google Scholar 

  • Oraguzie NC, Volz RK, Whitworth CJ, Bassett HCM, Hall AJ, Gardiner SE (2007). Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol. Technol. 44:212–219

    Article  CAS  Google Scholar 

  • Pandey A, Mann M (2000). Proteomics to study genes and genomes. Nature 405: 837–846

    Article  CAS  PubMed  Google Scholar 

  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006). Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol. 141: 811–824

    Article  CAS  PubMed  Google Scholar 

  • Peace CP, Ahmad R, Gradziel TM, Dandekar AM, Crisosto CH (2005a). The use of molecular genetics to improve peach and nectarine post-storage quality. Acta Horticult. 682:403–410

    Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005b). Endopolygalacturonase: a candidate gene for Freestone and Melting flesh in peach. Mol. Breeding 16:21–31

    Google Scholar 

  • Peace CP, Crisosto CH, Garner DT, Dandekar AM, Gradziel TM, Bliss FA (2006). Genetic control of internal breakdown in peach. Acta Horticult. 713:489–496

    CAS  Google Scholar 

  • Peace CP, Callahan AM, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007). Endopolygalacturonase genotypic variation in Prunus. Acta Horticult. 738:639–646

    Google Scholar 

  • Pichler FB, Walton EF, Day M, Triggs C, Janssen B, Wunsche JN, Putterill J, Schaffer RJ (2007). Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genet Genomes 3:329–339

    Article  Google Scholar 

  • Peil A, Garcia-Libreros T, Rickter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007). Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breeding 126:470–475

    Article  CAS  Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004). Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor. Appl. Genet. 109:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001). The candidate gene approach in plant genetics: a review. Mol. Breeding 7:275–291

    Article  CAS  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007). Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266:5–43

    Google Scholar 

  • RNAi News, Technology for Functional Genomics (2005). Rich Jorgensen discusses sense RNAi and forward genetics. http://www.rnainews.com/issues/3_23/rnainsider/112622-1.html. Cited June 17, 2008

  • Robertson DS (1989). Understanding the relationship between qualitative and quantitative genetics. p. 81–87. In: Helentjaris, T. and Burr, B. (eds), Development and Application of Molecular Markers to Problems in Plant Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Rudell DR, Mattheis JP, Curry EA (2008). Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J. Agr. Food Chem. 56:1138–1147

    Article  CAS  Google Scholar 

  • Samuelian SK, Baldo AM, Pattison JA, Weber CA (2008). Isolation and linkage mapping of NBS-LRR resistance gene analogs in red raspberry (Rubus idaeus L.) and classification among 270 Rosaceae NBS-LRR genes. Tree Genet Genomes doi: 10.1007/s11295-008-0160-2

    Google Scholar 

  • Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006). An enhanced microsatellite map of diploid Fragaria. Theor. Appl. Genet. 112:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007). A Genomics Approach Reveals That Aroma Production in Apple Is Controlled by Ethylene Predominantly at the Final Step in Each Biosynthetic Pathway. Plant Physiol 144: 1899–1912

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Fernie AR (2006). Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 11:508–516

    Article  CAS  PubMed  Google Scholar 

  • Schneider WL, Sherman DJ (2007). Acomprehensive Prunus pathogen detection array. Phytopath 97:S105

    Google Scholar 

  • Sholberg P, O’Gorman D, Bedford K, Leveswue CA (2005). Development of a DNA macroarray for detection and monitoring of economically important apple diseases. Plant Disease 89: 1143–1150

    Article  CAS  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arus P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008). Multiple models for Rosaceae genomics. Plant Physiol. 147:985–1003

    Article  CAS  PubMed  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, van de Weg WE, van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006). Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet. Genomes 2:202–224

    Article  Google Scholar 

  • Soares M, Bonaldo M, Jelene P, Su L Lawton L (1994). Construction and characterization of a normalization cDNA library. Proc. Natl. Acad. Sci. USA 91:9228–9232

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld T, Tobutt KR, Robbins TP (2003). Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor. Appl. Genet. 107:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Padilla IMG, Scorza R (2005) Rosaceae: Prunus spp. almond, apricot, cherry, nectarine, peach and plum In: Litz RE (ed) Biotechnology of fruit and nut crops, CABI Publishing, Wallingford and Cambridge, MA, pp 512–542

    Chapter  Google Scholar 

  • Sutherland BG, Tobutt KR, Robbins TP (2004). Molecular genetics of self-incompatibility in plums. Acta Horticult. 663:557–562

    CAS  Google Scholar 

  • Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000). Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor. Appl. Genet. 101:344–349

    Article  CAS  Google Scholar 

  • The United States Rosaceae Genomics, Genetics, and Breeding Initiative White Paper (2006). http://www.rosaceaewhitepaper.com Cited June 18, 2008

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46:34–53

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AI, Tao R (2004). The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J. 39:573–586

    Article  CAS  PubMed  Google Scholar 

  • van de Weg WE, Voorrips RE, Finkers HJ, Kodde LP, Jansen J, Bink MCAM (2004). Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining. Acta Horticult. 663:45–50

    Google Scholar 

  • van Ooijen J (2005). MapQTLÒ5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen, The Netherlands

    Google Scholar 

  • Vilanova S, Arús P, Sargent DJ, Monfort A (2007). Map comparison between two distant genomes of the Rosaceae: Prunus and Fragaria. Poster 454 in Plant & Animal Genome XV, San Diego, CA

    Google Scholar 

  • Wesley SA, Helliwell CA, Neil AS, Wang M-B, Liu Q, Gooding PS, Singh, SP, Abbott D, Stourtjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581–590

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wen X, Deng X (2007). Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol. Phylogeneti Evol. 44:315–324

    Google Scholar 

  • Yaegashi H, Yamatsuta T, Takahashi T, Li C, Isogai M, Kobori T, Ohki S, Yoshikawa N (2007). Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch Virol. 152:1839–1849

    Article  CAS  PubMed  Google Scholar 

  • Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008). A framework physical map for peach, a model Rosaceae species. Tree Genet. Genomes DOI 10.1007/s11295-008-0147-z

    Google Scholar 

  • Zheng, X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song, S, Pei Y, Li Y (2007). The cauliflower mosaic virus (CaMV) 35 S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell. Rep. 26:1195–1203

    Google Scholar 

  • Zhu Y, Barritt B (2008). Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet. Genomes DOI 10.1007/s11295-007-0131-z

    Google Scholar 

  • Zuo J, Qi-Wen N, Chua N-H (2000). An estrogen receptor-based transctivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24:265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peace, C., Norelli, J. (2009). Genomics Approaches to Crop Improvement in the Rosaceae. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_2

Download citation

Publish with us

Policies and ethics