Skip to main content
Log in

New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Apricot (Prunus armeniaca L.) shows gametophytic self-incompatibility controlled by a single locus with several allelic variants. An allele for self-compatibility (S C ) and seven alleles for self-incompatibility (S1S7) were described previously. Our experiments were carried out to ascertain whether the number of allelic variants of apricot S-locus was indeed so small. Twenty-seven apricot accessions were analysed for stylar ribonucleases by non-equilibrium pH gradient electrofocusing (NEpHGE) to determine their S-genotype. To validate the results of electrofocusing, the applicability of the S-gene-specific consensus PCR primers designed from sweet cherry sequences was tested. NEpHGE revealed 12 bands associated with distinct S-alleles in newly genotyped cultivars. Cherry consensus primers amplified 11 alleles out from 16 ones, which indicated that these primers could also recognize most of the S-RNase sequences in apricot, and provided an efficient tool to confirm or reject NEpHGE results. By combining the protein and DNA-based methods, complete or partial S-genotyping was achieved for 23 apricot accessions and nine putatively new alleles (provisionally labelled S8S16) were found. Their identity needs to be confirmed by pollination tests or S-allele sequencing. This study provides evidence that similarly to other Prunus species, the S-locus of apricot is more variable than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alburquerque, N., J. Egea, O. Pérez-Tornero & L. Burgos, 2002. Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles. Plant Breed 121: 343–347.

    Article  Google Scholar 

  • Bošković, R. & K.R. Tobutt, 1996. Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90: 245–250.

    Article  Google Scholar 

  • Bošković, R., K.R. Tobutt, H. Duval, I. Batlle, F. Dicenta, & F.J. Vargas, 1999. A stylar ribonuclease assay to detect self-compatible seedlings in almond progenies. Theor Appl Genet 99: 800–810.

    Article  Google Scholar 

  • Brózik, S. & J. Nyéki, 1975. A kajszi termékenyülési viszonyai. In: S. Brózik & J. Nyéki (Eds.), Gyümölcstermő növények termékenyülése, pp. 173–176. Mezőgazdasági Kiadó, Budapest.

    Google Scholar 

  • Burgos, L., J. Egea, R. Guerriero, R. Viti, P. Monteleone & J.M. Audergon, 1997a. The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. J Hortic Sci 72: 147–154.

    Google Scholar 

  • Burgos, L., C.A. Ledbetter, O. Pérez-Tornero, F. Ortín-Párraga & J. Egea, 1997b. Inheritance of sexual incompatibility in apricot. Plant Breed 116: 383–386.

  • Burgos, L., O. Pérez-Tornero, J. Ballester & E. Olmos, 1998. Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reprod 11: 153–158.

    Article  Google Scholar 

  • Cociu, V., 1993. The Apricot (in Romanian). Editura Ceres, Bucuresti.

    Google Scholar 

  • Egea, J. & L. Burgos, 1996. Detecting cross-incompatibility of three North-American apricot cultivars and establishing the first incompatibility group in apricot. J Am Soc Hortic Sci 121: 1002–1005.

    Google Scholar 

  • Egea, J., E. Garcia, L. Egea & T. Berenguer, 1991. Self-incompatibility in apricot cultivars. Acta Hortic 293: 285–293.

    Google Scholar 

  • Entani, T., M. Iwano, H. Shiba, F.-S. Che, A. Isogai & S. Takayama, 2003. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: Identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8: 203–213.

    Article  PubMed  Google Scholar 

  • Horn, J., 1939. Kajszi-, cseresznye-, meggytermesztés. Növényvédelem és Kertészet Kiadása, Budapest.

  • Igic, B. & J.R. Kohn, 2001. Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98: 13,167–13,171.

    Google Scholar 

  • Karayiannis, I. & A. Tsaftaris, 1999. Investigation on the inheritance of self-incompatibility in apricot (Prunus armeniaca L.) among F1 generation descendants. Acta Hortic 488: 295–301.

    Google Scholar 

  • Kostina, K.F., 1970. Self-fertility studies in apricot (in Russian). Trud Gos Nikit Botan Sada XLV: 7–17.

  • Ma, R.-C. & M.M. Oliveira, 2002. Evolutionary analysis of S-RNase genes from Rosaceae species. Mol Genet Genomics 267: 71–78.

    Article  PubMed  Google Scholar 

  • McClure, B.A., V. Haring, P.R. Ebert, M.A. Anderson, R.J. Simpson, F. Sakiyama & A.E. Clarke, 1989. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957.

    Article  PubMed  Google Scholar 

  • Mehlenbacher, S.A., V. Cociu & L.F. Hough, 1991. Apricots (Prunus). In: J.N. Moore & J.R. Ballington (Eds.), Genetic Resources of Temperate Fruit and Nut Crops, pp. 65–107. International Society for Horticultural Science, Wageningen.

    Google Scholar 

  • de Nettancourt, D., 1977. Incompatibility in angiosperms. In: Monographs on Theoretical and Applied Genetics, Springer-Verlag, Berlin Heidelberg New York, Vol. 3.

  • Nyujtó, F., S.J. Brózik, S. Brózik & J. Nyéki, 1985. Fruit set in apricot varieties. Acta Agron Acad Sci Hung 34: 65–72.

    Google Scholar 

  • Pedryc, A., 1996. New early ripening apricot varieties bred at Faculty of Horticulture in Budapest. Results of using the gene resources of apricots and peaches, Breclav. In: Book of Abstracts, pp. 43–48.

  • Pedryc, A., 2003. A kajszi nemesítése. In: B. Pénzes & L. Szalay (Eds.), Kajszi, Mezőgazda Kiadó, Budapest, pp. 53–84.

    Google Scholar 

  • Romero, C., A. Pedryc, V. Munoz, G. Llácer & M.L. Badenes, 2003. Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244–252.

    Article  PubMed  Google Scholar 

  • Romero, C., S. Vilanova, L. Burgos, J. Martínez-Calvo, M. Vicente, G. Llácer & M.L. Badenes, 2004. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56: 145–157.

    Article  PubMed  Google Scholar 

  • Schultz, J.H., 1948. Self-incompatibility in apricots. Proc Am Soc Hortic Sci 51: 171–174.

    Google Scholar 

  • Smykov, V.K., 1989. Abrikos (in Russian), VO Agropromizdat, Moscow, 129 pp.

  • Sonneveld, T., T.P. Robbins, R. Bošković & K.R. Tobutt, 2001. Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor Appl Genet 102: 1046–1055.

    Article  Google Scholar 

  • Sonneveld, T., K.R. Tobutt & T.P. Robbins, 2003. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107: 1059–1070.

    Article  PubMed  Google Scholar 

  • Surányi, D. & L. Molnár, 1981. A kajszibarackfa élettana. In: F. Nyujtó & D. Surányi (Eds.), Kajszibarack, p. 203. Mezőgazdasági Kiadó, Budapest.

  • Szabó, Z. & J. Nyéki, 1991. Blossoming, fructification and combination of apricot varieties. Acta Hortic 293: 295–302.

    Google Scholar 

  • Szabó, Z., J. Nyéki, A. Andrásfalvy, L. Szalay & A. Pedryc, 1999. Evaluation of some Romanian apricot varieties in Hungary. Acta Hortic 488: 211–214.

    Google Scholar 

  • Tao, R., H. Yamane, A. Sugiura, H. Murayama, H. Sassa & H. Mori, 1999. Molecular typing of S-alleles through identification, chracterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124: 224–233.

    Google Scholar 

  • Tobutt, K.R., R. Bošković, R. Cerović, T. Sonneveld & D. Ružić, 2004. Identification of incompatibility alleles in the tetraploid species sour cherry. Theor Appl Genet 108: 775–785.

    Article  PubMed  Google Scholar 

  • Ushijima, K., H. Sassa, R. Tao, H. Yamane, A.M. Dandekar, T.M. Gradziel & H. Hirano, 1998. Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): Primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260: 261– 268.

    Article  PubMed  Google Scholar 

  • Ushijima, K., H. Yamane, A. Watari, E. Kakehi, K. Ikeda, N.R. Hauck, A.F. Iezzoni & R. Tao, 2004. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and Prunus mume. Plant J 39: 573– 586.

    Article  PubMed  Google Scholar 

  • Wilson, C.M., 1971. Plant nucleases III. Polyacrylamide gel electrophoresis of corn ribonuclease isoenzymes. Plant Physiol 48: 64–68.

    Google Scholar 

  • Yaegaki, H., T. Shimada, T. Moriguchi, H. Hayama, T. Haji & M. Yamaguchi, 2001. Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex Plant Reprod 13: 251–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Hegedüs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halász, J., Hegedüs, A., Hermán, R. et al. New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica 145, 57–66 (2005). https://doi.org/10.1007/s10681-005-0205-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-0205-7

Keywords

Navigation