Skip to main content

Advertisement

Log in

Cloning and linkage mapping of resistance gene homologues in apple

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Apple (Malus x domestica Borkh.) sequences sharing homology with known resistance genes were cloned using a PCR-based approach with degenerate oligonucleotide primers designed on conserved regions of the nucleotide-binding site (NBS). Sequence analysis of the amplified fragments indicated the presence of at least 27 families of NBS-containing genes in apple, each composed of several very similar or nearly identical sequences. The NBS-leucine-rich repeat homologues appeared to include members of the two major groups that have been described in dicot plants: one possessing a toll-interleukin receptor element and one lacking such a domain. Genetic mapping of the cloned sequences was achieved through the development of CAPS and SSCP markers using a segregating population of a cross between the two apple cultivars Fiesta and Discovery. Several of the apple resistance gene homologues mapped in the vicinity, or at least on the same linkage group, of known loci controlling resistance to various pathogens. The utility of resistance gene-homologue sequences as molecular markers for breeding purposes and for gene cloning is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts MGM, te Lintel Hekkert B, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

    CAS  PubMed  Google Scholar 

  • Aldrich J, Cullis CA (1993) RAPD analysis in flax: optimization of yield and reproducibility using Klen 1 DNA polymerase, Chelex 100 and gel purification of genomic DNA. Plant Mol Biol Rep 11:128–141

    CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Nat Acad Sci USA 101:886–890

    Article  CAS  PubMed  Google Scholar 

  • Bent AF (1996) Function meets structure in the study of plant disease-resistance genes. Plant Cell 8:1757–1771

    CAS  Google Scholar 

  • Brotman Y, Silberstein L, Kovalski I, Perin C, Dogimont C, Pirat M, Klingler J, Thompson GA, Perl-Treves R (2002) Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theor Appl Genet 104:1055–1063

    Article  Google Scholar 

  • Cordero JC, Skinner DZ (2002) Isolation from alfalfa of resistance gene analogues containing nucleotide-binding sites. Theor Appl Genet 104:1283–1289

    Article  Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van der Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease-resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    CAS  Google Scholar 

  • Hemmat M, Brown SK, Weeden NF (2002) Tagging and mapping scab-resistance genes from R12740-7A apple. J Am Soc Hortic Sci 127:365–370

    CAS  Google Scholar 

  • Janse J, Verhaegh JJ, Den Nijs APM (1994) Early selection of partial resistance to powdery mildew, Podosphaera leucotricha (Ell. et EV.) Salm. in apple progenies. Euphytica 77:7–9

    Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance-gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    CAS  PubMed  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific markers. Plant J 4:403–410

    CAS  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen-resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    CAS  PubMed  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    CAS  PubMed  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Graner A, Schulze-Lefert P (1999) RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor Appl Genet 98:509–520

    CAS  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003a) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopathology 93:493–501

    Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    CAS  PubMed  Google Scholar 

  • Martin GB (1999) Functional analysis of plant resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    Google Scholar 

  • Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein-kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    CAS  PubMed  Google Scholar 

  • Martin GB, Frary A, Wu T, Brommonschenkel S, Chunwongse J, Earle ED, Tanksley SD (1994) A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552

    CAS  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease-resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformational polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    PubMed  Google Scholar 

  • Pan QL, Liu YS, Budai-Hadrian O, Sela M, Carmen-Goren L, Zamir D, Fluhr R (2000a) Comparative genetics of nucleotide binding site-leucine rich repeat resistance genes homologues in the genome of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    CAS  PubMed  Google Scholar 

  • Pan QL, Wendel J, Fluhr R (2000b) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genome. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Google Scholar 

  • Parniske M, Hammond Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BBH, Jones JDG (1997) Novel disease-resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91:821–832

    CAS  PubMed  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550-kb BAC contig spanning the genomic region containing the apple resistance gene Vf. Mol Gen Genet 262:884-891

    Article  CAS  PubMed  Google Scholar 

  • Pickett FB, Meeks-Wagner DR (1995) Seeing double: appreciating genetic redundancy. Plant Cell 7:1347–1356

    Google Scholar 

  • Rivkin MI, Vellejos CE, McClean PE (1999) Disease resistance-related sequences in common bean. Genome 42:41–47

    CAS  PubMed  Google Scholar 

  • Rychlik W (1995) Selection of primers for polymerase chain reaction. Mol Biotechnol 3:129–134

    CAS  PubMed  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914-921

    CAS  PubMed  Google Scholar 

  • Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945

    Article  CAS  Google Scholar 

  • Seglias NP, Gessler C (1997) Genetics of apple powdery mildew resistance from Malus zumi (Pl2). IOBC/WPRS Bull 20:195–208

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance-gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    CAS  PubMed  Google Scholar 

  • Stam P, van Oijen JW (1995) JOINMAP ver 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, The Netherlands

  • Timmerman-Vaughan GM, Frew TJ, Weeden NF (2000) Characterization and linkage mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theor Appl Genet 101:241–247

    CAS  Google Scholar 

  • Traut TW (1994) The function and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222:9–19

    CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum-resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Int 14:508–515

    CAS  PubMed  Google Scholar 

  • Williams EB, Kuç J (1969) Resistance in Malus to Venturia inaequalis. Annu Rev Phytopathol 7:223–246

    Article  CAS  Google Scholar 

  • Yu YG, Buss GR, Maroof MAS (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide binding site. Proc Natl Acad Sci USA 93:11751–11756

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the project “Advanced Biology” funded by the Fondazione delle Casse di Risparmio di Trento e Rovereto, Trento, Italy. The authors thank Luigi Cattivelli and Eve Silfverberg-Dilworth for critical reading of the manuscript and Andrea Gandolfi for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baldi.

Additional information

Communicated by H. Nybom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, P., Patocchi, A., Zini, E. et al. Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109, 231–239 (2004). https://doi.org/10.1007/s00122-004-1624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1624-x

Keywords

Navigation