Skip to main content
Log in

Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genetically anchored physical map of peach is a valuable tool for identifying loci controlling economically important traits in Prunus. Breeding for disease resistance is a key component of most breeding programs. The identification of loci for pathogen resistance in peach provides information about resistance loci, the organization of resistance genes throughout the genome, and permits comparison of resistance regions among other genomes in the Rosaceae. This information will facilitate the breeding of resistant species of Prunus. A candidate gene approach was implemented for locating resistance loci in the genome of peach. Candidate genes representing NBS-LRR, kinase, transmembrane domain classes, as well as, pathogen response (PR) proteins and resistance-associated transcription factors were hybridized to a peach BAC library and mapped by using the peach physical map database and the Genome Database for Rosaceae (GDR). A resistance map for Prunus was generated and currently contains 42 map locations for putative resistance regions distributed among 7 of the 8 linkage groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarts MGM, Hekkert BL, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant-Microbe Interact 11:51–258

    Article  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Ballester J, Boskovic R, Batlle I, Arús P, Vargas F, de Vicente C (1998) Location of the self-incompatibility gene on the almond linkage map. Plant Breed 117:69–72

    Article  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    Article  PubMed  CAS  Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004a) High-resolution mapping and chromosome landing at the root-know nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–1327

    Article  CAS  Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigert F, Dirlewanger E, Esmenjaud D (2004b) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    Article  CAS  Google Scholar 

  • Clément D, Lanaud C, Sabau X, Fouet O, Le Cunff L, Ruiz E, Risterucci AM, Glaszmann JC, Piffanelli P (2004) Creation of BAC genomic resources for cocoa (Theobroma cacao L.) for physical mapping of RGA containing BAC clones. Theor Appl Genet 108:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Cooley MB, Pethirana S, Wu H, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. The Plant Cell 12:663–676

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–832

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genom 272:680–689

    Article  CAS  Google Scholar 

  • Decroocq V, Schurdi-Levraud V, Wawrzyńczak D, Eyquard J-P, Lansac M (2002) Transcript imaging and candidate gene strategy for the characterisation of Prunus/PPV interactions. Proc. 6th Conf EFPP 2002. Plant Protect Sci 38:112–116

    Google Scholar 

  • Dettori M, Quarta R, Verde I (2001) A peach linkage map intergrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Gmitter FG (2003) Cloning and characterization of receptor kinase class disease resistance gene candidates in Citrus. Theor Appl Genet 108:53–61

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid–location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, and Arús P (2004b) Comparative mapping and marker–assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  CAS  Google Scholar 

  • Duprat A, Caranta C, Revers F, Menand B, Browning K, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927–934

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Ann Biochem 132:6–13

    Article  CAS  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach×Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ (2004) Identification of markers tightly linked to sbm recessive genes fro resistance to Pea seed-borne mosaic virus. Theor Appl Genet 109:488–494

    PubMed  CAS  Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Iñigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease within Solanaceae. Genetics 155:873–887

    PubMed  CAS  Google Scholar 

  • Horn R, Lecouls AC, Calahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tompkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet (in press)

  • Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arus P (2001) A reciprocal translocation between Garfi almond and Nemared peach. Theor Appl Genet 102:1169–1176

    Article  CAS  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond×peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Joobeur T, Periam N, de Vicente MC, King GJ, Arus P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5:130

    Article  PubMed  CAS  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility of mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during potyvirus infection. Curr Biol 12:1045–1051

    Article  Google Scholar 

  • Lopez CE, Zuluaga AP, Cooke R, Delseny M, Tohme J, Verdier V (2003) Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genom 269:658–671

    Article  CAS  Google Scholar 

  • McDowell JC (2004) Convergent evolution of disease resistance genes. Trends Plant Sci 9:315–317

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Michelmore R (2000) Genomic approaches to plant disease resistance. Curr Opin Plant Biol 3:125–131

    Article  PubMed  CAS  Google Scholar 

  • Nicaise V, German-Retana S, Sanjuán R, Dubrana M, Mazier M, Maisonneuve B, Candresse T, Caranta C, Le Gall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Park A, Cho S, Yun U, Jin M, Lee S, Sachetto-Martins G, Park O (2001) Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. J Biol Chem 276:26688–26693

    Article  PubMed  CAS  Google Scholar 

  • Peñuela S, Danesh D, Young ND (2002) Targeted isolation, sequence analysis and physical mapping of non TIR NBS-LRR genes in soybean. Theor Appl Genet 104:261–272

    Article  PubMed  Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, Dev Sharma K, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CM, Freire MA, Camilleri C, Robaglia C (1998) The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development. Plant J 13:465–473

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 579:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Sosinski B, Lu ZX, Tabb A, Sossey-Alaoui K, Rajapakse S, Glassmoyer K, Scorza R, Reighard G, Ballard RE, Baird WV, Abbott AG (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach (Prunus persica (L.) Batsch) for use in marker assisted selection. Acta Hortic 465:61–68

    CAS  Google Scholar 

  • van der Fits L, Zhang H, Menke FLH, Deneka M, Memelink J (2000) A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol Biol 44:675–685

    Article  PubMed  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility. Theor Appl Genet 107:239–247

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarrini S, Ahang H, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant-Microbe Int 14:508–515

    Article  CAS  Google Scholar 

  • Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002a) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45:319–328

    Article  CAS  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002b) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93:352–358

    Article  CAS  Google Scholar 

  • Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42:95–110

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Korban SS (2002) AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map region that spans the Vf locus in the apple genome. Plant Mol Biol 50:803–818

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Zhu Q, Dai S, Lamb C, Beachy RN (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16:5247–5259

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and non-TIR NBS-LRR resistance gene family in Medicago trancatula. Mol Plant-Microbe Int 15:529–539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the United States Department of Agriculture/Agricultural Research Service cooperative agreement number 58-1920-1-132, by a European grant from the Inter-regional fund, InterReg III, between Aquitaine and Euskadi (B 03786), and a special grant from INRA for the constitution of a young team. Dr. Bryon Sosinski is acknowledged for providing a pair of degenerate primers. Special thanks to Dr. Marisa Badenes and Dr. Laura Georgi for their generous support and guidance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Decroocq.

Additional information

Communicated by R. Hagemann

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalli, D.A., Decroocq, V., Blenda, A.V. et al. Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus . Theor Appl Genet 111, 1504–1513 (2005). https://doi.org/10.1007/s00122-005-0079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0079-z

Keywords

Navigation