Skip to main content
Log in

The application of “-omics” technologies for the classification and identification of animals

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The correct classification of organisms based on specific rules is essential in biological sciences. Traditionally, morphological characteristics such as size, shape, color, and anatomical structures have been used to identify and classify species. However, as consequence of the tremendous advances in molecular technologies during the last years, new approaches have become available for taxonomic research. Various modern high-throughput technologies allow the detailed characterization of the genome, proteome, metabolome as well as the morphology of an organism. Furthermore, the open access storage of such comprehensive data sets as part of an uprising digital cybertaxonomy enables highly fascinating digital dimensions for modern taxonomy, including the buildup of virtual collections as well as data sets for 3D printing techniques that can be used to replicate complete voucher specimens or at least important diagnostic characters. As a result of these advances, we are now able to document, describe, and identify species much more comprehensively than just a few years ago. In this review we provide an overview about the technical advances in taxonomic research in recent years and discuss their power and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akkari, N., Enghoff, H., & Metscher, B.D. (2015). A new dimension in documenting new species: High-detail imaging for myriapod taxonomy and first 3D cybertype of a new millipede species (Diplopoda, Julida, Julidae). Public Library of Science ONE, 10, e0135243.

  • Andújar, C., Arribas, P., Ruzicka, F., Crampton-Platt, A., Timmermans, M. J., & Vogler, A. (2015). Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Molecular Ecology, 24, 3603–3617.

  • Arienti, M., Antony, C., Wicker-Thomas, C., Delbecque, J. P., & Jallon, J. M. (2010). Ontogeny of Drosophila melanogaster female sex appeal and cuticular hydrocarbons. Integrative Zoology, 5, 272–282.

    Article  PubMed  Google Scholar 

  • Asher, R. J., & Hofreiter, M. (2006). Tenrec phylogeny and the noninvasive extraction of nuclear DNA. Systematic Biology, 55, 181–194.

    Article  PubMed  Google Scholar 

  • Ashton, L., Lau, K., Winder, C. L., & Goodacre, R. (2011). Raman spectroscopy: lighting up the future of microbial identification. Future Microbiology, 6, 991–997.

    Article  CAS  PubMed  Google Scholar 

  • Astrin, J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. ZooKeys, 365, 67–70.

    Article  PubMed  Google Scholar 

  • Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using RAD markers. Public Library of Science ONE, 3, e3376.

    PubMed  PubMed Central  Google Scholar 

  • Balke, M., Schmidt, S., Hausmann, A., Toussaint, E. F. A., Bergsten, J., Buffington, M., et al. (2013). Biodiversity into your hands—a call for a virtual global natural history “metacollection”. Frontiers in Zoology, 10, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi, K., Linderoth, T., Vanderpool, D., Good, J. M., Nielsen, R., & Moritz, C. (2013). Unlocking the vault: next-generation museum population genomics. Molecular Ecology, 22, 6018–6032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blacket, M. J., Semeraro, L., & Malipatil, M. B. (2012). Barcoding Queensland fruit flies (Bactrocera tryoni): impediments and improvements. Molecular Ecology Resources, 12, 428–436.

    Article  CAS  PubMed  Google Scholar 

  • Boistel, R., Swoger, J., Kržic, U., Fernandez, F., Gillet, B., & Reynaud, E. G. (2011). The future of three-dimensional microscopic imaging in marine biology. Marine Ecology, 32, 438–452.

    Article  Google Scholar 

  • Brooker, A. J., Shinn, A. P., & Bron, J. E. (2012). Use of laser scanning confocal microscopy for morphological taxonomy and the potential for digital type specimens (e-types). Aquatic Biology, 14, 165–173.

    Article  Google Scholar 

  • Bucklin, A., Steinke, D., & Blanco-Bercial, L. (2011). DNA barcoding of marine Metazoa. Annual Review of Marine Science, 3, 471–508.

    Article  PubMed  Google Scholar 

  • Butcher, B. A., Smith, M. A., Sharkey, M. J., & Quicke, D. L. J. (2012). A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadinae) based largely on COI barcoded specimens, with rapid descriptions of 179 new species. Zootaxa, 3457, 1–232.

    Google Scholar 

  • Cameron, S., Rubinoff, D., & Will, K. (2006). Who will actually use DNA barcoding and what will it cost? Systematic Biology, 55, 844–847.

    Article  PubMed  Google Scholar 

  • Cappelini, E., Gentry, A., Palkopoulou, E., Ishida, Y., Cram, D., Roos, A.-M., et al. (2014). Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zoological Journal of the Linnean Society, 170, 222–232.

    Article  Google Scholar 

  • Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology, 22, 4369–4383.

    Article  PubMed  Google Scholar 

  • Chang, S. C., Chan, T. Y., & Ahyong, S. T. (2014). Two new species of the rare lobster genus Thaumastocheles Wood-Mason, 1874 (Reptantia: Nephropidae) discovered from recent deep-sea expeditions in the Indo-West Pacific. Journal of Crustacean Biology, 34, 107–122.

    Article  Google Scholar 

  • Chen, H.-N., Høeg, J. T., & Chan, B. K. K. (2013). Morphometric and molecular identification of individual barnacle cyprids from wild plankton: an approach to detecting fouling and invasive barnacle species. Biofouling, 29, 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., & Rainey, F. A. (2014). Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. International Journal of Systematic and Evolutionary Microbiology, 64, 316–324.

    Article  PubMed  Google Scholar 

  • Cochrane, G., Cook, C. E., & Birney, E. (2012). The future of DNA sequence archiving. GigaScience, 1, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook, L. G., Edwards, R. D., Crisp, M. D., & Hardy, N. B. (2010). Need morphology always be required for new species descriptions? Invertebrate Systematics, 24, 322–326.

    Article  Google Scholar 

  • Correa, M. C. G., Germain, J.-F., Malausa, T., & Zaviezo, T. (2012). Molecular and morphological characterization of mealybugs (Hemiptera: Pseudococcidae) from Chilean vineyards. Bulletin of Entomological Research, 102, 524–530.

    Article  CAS  PubMed  Google Scholar 

  • Corthals, A., & DeSalle, R. (2005). An application of tissue and DNA banking for genomics and conservation: the Ambrose Monell Cryo-Collection (AMCC). Systematic Biology, 54, 819–823.

    Article  PubMed  Google Scholar 

  • Costa-da-Silva, A., Marinotti, O., Ribeiro, J. M. C., Silva, M. C. P., Lopes, A. R., Barros, M. S., et al. (2014). Transcriptome sequencing and developmental regulation of gene expression in Anopheles aquasalis. Public Library of Science ONE, 8, e3005.

  • Cozzuol, M. A., Clozato, C. L., Holanda, E. C., Rondrigues, F. H. G., Nienow, S., de Thoisy, B., et al. (2013). A new species of tapir from Amazon. Journal of Mammalogy, 94, 1331–1345.

    Article  Google Scholar 

  • Crampton-Platt, A., Timmermans, M. J. T. N., Gimmel, M. L., Kutty, S. N., Cockerill, T. D., Khen, C. V., et al. (2015). Soup to tree: the phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample. Molecular Biology and Evolution, 32, 2302–2316.

  • Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends in Ecology and Evolution, 29, 566–571.

    Article  PubMed  Google Scholar 

  • Cvačka, J., Jiroŝ, P., Ŝobotník, J., Hanus, R., & Svatoŝ, A. (2006). Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. Journal of Chemical Ecology, 32, 409–434.

    Article  PubMed  CAS  Google Scholar 

  • Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.

    Article  Google Scholar 

  • De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., & Vandamme, P. (2011). Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Systematic and Applied Microbiology, 34, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Diz, A. P., Martínez-Fernández, M., & Rolán-Alvarez, E. (2012). Proteomics in evolutionary ecology: linking the genotype with the phenotype. Molecular Ecology, 21, 1060–1080.

    Article  CAS  PubMed  Google Scholar 

  • Dufresne, F., & Jeffery, N. (2011). A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Research, 19, 925–938.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., et al. (2008). Broad phylogenetic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Dupuis, J. R., Roe, A. R., & Sperling, F. A. H. (2012). Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology, 21, 4422–4436.

    Article  PubMed  Google Scholar 

  • Eaton, M. J., Meyers, G. L., Kolokotronis, S.-O., Leslie, M. S., Martin, A. P., & Amato, G. (2010). Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conservation Genetics, 11, 1389–1404.

    Article  Google Scholar 

  • Eichner, C., Frost, P., Dysvik, B., Jonassen, I., Kristiansen, B., & Nilsen, F. (2011). Salmon louse (Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, revealed using EST-sequencing and microarray analysis. BMC Genomics, 9, 126.

    Article  CAS  Google Scholar 

  • Enghoff, H. (2009). What is taxonomy?—an overview with myriapodological examples. Soil Organisms, 81, 441–451.

    Google Scholar 

  • Engstrand, R. C., Tovar, J. C., Cibrián-Jaramillo, A., & Kolokotronis, S.-O. (2010). Genetic variation in avocado stem weevils Copturus aguacatae (Coleoptera: Curculionidae) in Mexico. Mitochondrial DNA, 21, 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Erpenbeck, D., Hooper, J. N. A., Bonnard, I., Sutcliffe, P., Chandra, M., Perio, P., et al. (2012). Evolution, radiation and chemotaxonomy of Lamellodysidea, a demosponge genus with anti-plasmodial metabolites. Marine Biology, 159, 1119–1127.

    Article  CAS  Google Scholar 

  • Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T., & Arvanitidis, C. (2013). Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys, 263, 1–45.

    Article  PubMed  Google Scholar 

  • Feltens, R., Görner, R., Kalkhof, S., Gröger-Arndt, H., & von Bergen, M. (2010). Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evolutionary Biology, 10, 95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferguson, B., Street, S. L., Wright, H., Pearson, C., Jia, Y., Thompson, S. L., et al. (2007). Single nucleotide polymorphisms (SNPs) distinguish Indian-origin and Chinese-origin rhesus macaques (Macaca mulatta). BMC Genomics, 8, 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fournier, P.-E., Drancourt, M., Colson, P., Rolain, J.-M., La Scola, B., & Raoult, D. (2013). Modern clinical microbiology: new challenges and solutions. Nature Reviews Microbiology, 11, 574–585.

    Article  CAS  PubMed  Google Scholar 

  • Frentiu, F. D., & Chenoweth, S. F. (2010). Clines in cuticular hydrocarbons in two Drosophila species with independent population histories. Evolution, 64, 1784–1794.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad, J. C., Andersen, B., & Thrane, U. (2008). The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycological Research, 112, 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., & Moritz, C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution, 27, 480–488.

    Article  PubMed  Google Scholar 

  • Gonçalves, P. F. M., Oliveira-Marques, A. R., Matsumoto, T. E., & Miyaki, C. Y. (2015). DNA barcoding identifies illegal parrot trade. Journal of Heredity, 106, 560–564.

    Article  PubMed  Google Scholar 

  • Gotelli, N. J., Ellison, A. M., & Ballif, B. A. (2012). Environmental proteomics, biodiversity studies, and food-web structure. Trends in Ecology and Evolution, 27, 436–442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillem, R. M., Drijfhout, F. P., & Martin, S. J. (2012). Using chemo-taxonomy of host ants to help conserve the large blue butterfly. Biological Conservation, 148, 39–43.

    Article  Google Scholar 

  • Guschanski, K., Krause, J., Sawyer, S., Valente, L. M., Bailey, S., Finstermeier, K., et al. (2013). Next-generation museomics disentangles one of the largest primate radiations. Systematic Biology, 62, 539–554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanai, T. (1999). HPLC: a practical guide (RSC chromatography monographs). Letchworth: The Royal Society of Chemistry.

    Google Scholar 

  • Handschuh, S., Baeumler, N., Schwaha, T., & Ruthensteiner, B. (2013). A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario. Frontiers in Zoology, 10, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haus, T., Akom, E., Agwanda, B., Hofreiter, M., Roos, C., & Zinner, D. (2013). Mitochondrial diversity and distribution of African green monkeys (Chlorocebus Gray, 1870). American Journal of Primatology, 75, 350–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausmann, A., Godfray, H. C. J., Huemer, P., Mutanen, M., Rougerie, R., van Nieukerken, E. J., et al. (2013). Genetic patterns in European geometrid moths revealed by the Barcode Index Number (BIN system). Public Library of Science ONE, 8, e84518.

    PubMed  PubMed Central  Google Scholar 

  • Haye, P. A., Segovia, N. I., Vera, R., Gallardo, M. D. A., & Gallardo-Escárate, C. (2012). Authentication of commercialized crab-meat in Chile using DNA barcoding. Food Control, 25, 239–244.

    Article  CAS  Google Scholar 

  • Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003a). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, S96–S99.

    Article  CAS  Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003b). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 313–321.

    Article  CAS  Google Scholar 

  • Hebert, P. D. N., deWaard, J. R., Zakharov, E. V., Prosser, S. W. J., Sones, J. E., McKeown, J. T. A., et al. (2013). A DNA “Barcode Blitz”: rapid digitization and sequencing of a natural history collection. Public Library of Science ONE, 8, e68535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrich, L., Morinière, J., Haszprunar, G., Hebert, P. D. N., Hausmann, A., Köhler, F., et al. (2015). A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Molecular Ecology Resources, 15, 795–818.

    Article  CAS  PubMed  Google Scholar 

  • Hrbek, T., da Silva, V. M. F., Dutra, N., Gravena, W., Martin, A. R., & Farias, I. P. (2014). A new species of river dolphin from Brazil or: how little do we know our biodiversity. Public Library of Science ONE, 9, e83623.

    PubMed  PubMed Central  Google Scholar 

  • IISE (2011). State of observed species. Tempe, Arizona. International Institute for Species Exploration. Retrieved 2014-09-16 from http://www.esf.edu/species/SOS.htm

  • Ivanisěvić, J., Thomas, O. P., Lejeusne, C., Chevaldonné, P., & Pérez, T. (2011). Metabolic fingerprinting as an indicator of biodiversity: towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics, 7, 289–304.

    Article  CAS  Google Scholar 

  • Ji, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., et al. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16, 1245–1257.

    Article  PubMed  Google Scholar 

  • Jónsson, H., Schubert, M., Seguin-Orlando, A., Ginolhac, A., Peterson, L., Fumagalli, M., et al. (2014). Speciation with gene flow in equids despite extensive chromosomal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 111, 18655–18660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karas, M., & Hillenkamp, F. (1988 ). Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Analytical Chemistry, 60, 2299–2303.

  • Karr, T. L. (2008). Application of proteomics to ecology and population biology. Heredity, 100, 200–206.

  • Kather, R., & Martin, S. J. (2012). Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology, 37, 25–32.

    Article  CAS  Google Scholar 

  • Kather, R., Drijfhout, F. P., & Martin, S. J. (2011). Task group differences in cuticular lipids in the honey bee Apis mellifera. Journal of Chemical Ecology, 37, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann, C., Ziegler, D., Schaffner, F., Carpenter, S., Pflüger, V., & Mathis, A. (2011). Evaluation of matrix-assisted laser desorption/ionization time off flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Medical and Veterinary Entomology, 25, 32–38.

  • Khalaji-Pirbalouty, V., & Raupach, M. J. (2014). A new species of Cymodoce Leach, 1814 (Crustacea: Isopoda: Sphaeromatidae) based on morphological and molecular data, with a key to the Northern Indian Ocean species. Zootaxa, 3826, 230–254.

    Article  PubMed  Google Scholar 

  • Kircher, M., & Kelso, J. (2010). High-throughput DNA sequencing—concepts and limitations. BioEssays, 32, 524–536.

    Article  CAS  PubMed  Google Scholar 

  • Kron, P., Suda, J., & Husband, B. C. (2007). Application of flow cytometry to evolutionary and population biology. Annual Review of Ecology, Evolution, and Systematics, 38, 847–876.

    Article  Google Scholar 

  • Laakmann, S., Gerdts, G., Erler, R., Knebelsberger, T., Martínez Arbízu, P., & Raupach, M. J. (2013). Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Molecular Ecology Resources, 13, 862–876.

    Article  CAS  PubMed  Google Scholar 

  • Lamichhaney, S., Berglund, J., Almén, M. S., Maqbool, K., Grabherr, M., Martinez-Barrio, A., et al. (2015). Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature, 518, 371–375.

    Article  CAS  PubMed  Google Scholar 

  • Leaché, A. D., Fujita, M. K., Minin, V. N., & Bouckaert, R. R. (2014). Species delimitation using genome-wide SNP data. Systematic Biology, 63, 534–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenihan, J., Kvist, S., Fernández, S., Giribret, G., & Ziegler, A. (2014). A dataset comprising four microcomputed tomography scans of freshly fixed and museum earthworm specimens. GigaScience, 3, 6.

  • Leray, M., & Knowlton, N. (2015). DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences of the United States of America, 112, 2076–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, D., & Silverman, J. (2000). ‘You are what you eat’: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 87, 412–416.

    Article  CAS  PubMed  Google Scholar 

  • Liedigk, R., Kolleck, J., Böker, K. O., Meeijard, E., Md-Zain, B. M., Abdul-Latiff, M. A. B., et al. (2015). Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics, 16, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockey, K. H. (1988). Lipids of the insect cuticle: origin, composition and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 89, 595–645.

    Article  Google Scholar 

  • Lu, G.-H., Chan, K., Liang, Y.-Z., Leung, K., Chan, C.-L., Jiang, Z.-H., et al. (2005). Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related umbelliferae herbs. Journal of Chromatography A, 1073, 383–392.

    Article  CAS  PubMed  Google Scholar 

  • Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6, 287–303.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S. J., Helantera, H., & Drijfhout, F. P. (2008). Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biological Journal of the Linnean Society, 95, 131–140.

    Article  Google Scholar 

  • May, R. R., & Harvey, P. H. (2009). Species uncertainties. Science, 323, 687.

    Article  CAS  PubMed  Google Scholar 

  • Mayagaya, V. S., Michel, K., Benedict, M. Q., Killeen, G. F., Wirtz, R. A., Ferguson, H. M., et al. (2009). Non-destructive determination of age and species of Anopheles gambiae s.l. using near-infrared spectroscopy. The American Journal of Tropical Medicine and Hygiene, 81, 622–630.

    Article  CAS  PubMed  Google Scholar 

  • Mazzeo, M. F., de Giulio, B., Guerriero, G., Ciarcia, G., Malorni, A., Russo, G. L., et al. (2008). Fish authentication by MALDI-TOF mass spectrometry. Journal of Agricultural and Food Chemistry, 56, 11071–11076.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J., Dikow, T., Agosti, D., Sautter, G., Catapano, T., Penev, L., et al. (2012). From taxonomic literature to cybertaxonomic content. BMC Biology, 10, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, J. A., Miller, J. H., Pham, D.-S., & Beentjes, K. K. (2014). Cyberdiversity: Improving the informatic value of diverse tropical arthropod inventories. Public Library of Science ONE, 9, e115750.

    PubMed  PubMed Central  Google Scholar 

  • Minelli, A. (2013). Zoological nomenclature in the digital era. Frontiers in Zoology, 10, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767.

    Article  CAS  PubMed  Google Scholar 

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on Earth and in the ocean? Public Library of Science Biology, 9, e1001127.

    CAS  Google Scholar 

  • Nadeau, N. J., Martin, S. H., Kozak, K. M., Salazar, C., Dasmahapatra, K., Davey, J. W., et al. (2013). Genome-wide patterns of divergence and gene flow across a butterfly radiation. Molecular Ecology, 22, 814–826.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, Z. T., Sonet, G., Glaw, F., & Vences, M. (2012). First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. Public Library of Science ONE, 7, e34506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, L. A., Wallman, J. F., & Dowton, M. (2007). Using COI barcodes to identify forensically and medically important blowflies. Medical and Veterinary Entomology, 21, 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, S. J., & Puterka, G. J. (2014). Variation in the salivary proteomes of differently virulent green bug (Schizaphis graminum Rondani) biotypes. Journal of Proteomics, 105, 186–203.

    Article  CAS  PubMed  Google Scholar 

  • Oakley, T. H., Wolfe, J. M., Lindgren, A. R., & Zaharoff, A. K. (2012). Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution, 30, 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Oetjen, J., Veselkov, K., Watrous, J., McKenzie, J. S., Becker, M., Hauberg-Lotte, L., et al. (2015). Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry. GigaScience, 4, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgiazzi, A., Dunbar, M. B., Panagos, P., de Groot, G. A., & Lemanceau, P. (2015). Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biology & Biochemistry, 80, 244–250.

    Article  CAS  Google Scholar 

  • Padial, J. M., Miralles, A., de la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pante, E., Abdelkrim, J., Viricel, A., Gey, D., France, S. C., Boisselier, M. C., et al. (2015). Use of RAD sequencing for delimiting species. Heredity, 114, 450–459.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou, A., Taberlet, P., & Zinger, L. (2015). Metagenome skimming for phylogenetic community ecology: a new era in biodiversity research. Molecular Ecology, 24, 3515–3517.

    Article  PubMed  Google Scholar 

  • Pasquini, C. (2003). Near infrared spectroscopy: fundamentals practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14, 138–219.

    Article  Google Scholar 

  • Perelman, P., Johnson, W. E., Roos, C., Seuanez, H. N., Horvath, J. E., Moreira, M. A. M., et al. (2011). A molecular phylogeny of living primates. Public Library of Science Genetics, 7, e1001342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen, R., Johnsen, G., Bruheim, P., & Andreassen, T. (2014). Development of hyperspectral imaging as a bio-optical taxonomic tool for pigmented marine organisms. Organisms, Diversity and Evolution, 14, 237–246.

    Article  Google Scholar 

  • Pilgrim, E. M., & Darling, J. A. (2010). Genetic diversity in two introduced biofouling amphipods (Ampithoe valida & Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversity. Diversity and Distributions, 16, 827–839.

    Article  Google Scholar 

  • Poelstra, J. W., Vijay, N., Bossu, C. M., Lantz, H., Ryll, B., Müller, I., et al. (2014). The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science, 344, 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  • Polaszek, A., Agosti, D., Alonso-Zarazaga, M., Beccaloni, G., de Place Bjørn, P., Bouchet, P., et al. (2005). A universal register for animal names. Nature, 437, 477.

    Article  CAS  PubMed  Google Scholar 

  • Pop, M., & Salzberg, S. L. (2008). Bioinformatics challenges of new sequencing technology. Trends in Genetics, 24, 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puillandre, N., Reto, S., Philippe, F., Estelle, B., Frédéric, P., Audrey, R., et al. (2014). When everything converges: Integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea). Molecular Phylogenetics and Evolution, 80, 186–192.

    Article  PubMed  Google Scholar 

  • Rasmussen, R. S., Morrissey, M. T., & Hebert, P. D. N. (2013). DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. Journal of Agricultural and Food Chemistry, 57, 8379–8385.

    Article  CAS  Google Scholar 

  • Raupach, M. J., Hendrich, L., Küchler, S. M., Deister, F., Morinière, J., & Gossner, M. M. (2014). Building-up of a DNA barcode library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany reveals taxonomic uncertainties and surprises. Public Library of Sciences ONE, 9, e106940.

    Google Scholar 

  • Rendón-Anaya, M., Delaye, L., Possani, L. D., & Herrera-Estrella, A. (2012). Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. Public Library of Sciences ONE, 7, e43331.

    Google Scholar 

  • Riccardi, N., Lucini, L., Benagli, C., Welker, M., Wicht, B., & Tonolla, M. (2012). Potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of freshwater zooplankton: a pilot study with three Eudiaptomus (Copepoda: Diaptomidae) species. Journal of Plankton Research, 34, 1–9.

    Article  CAS  Google Scholar 

  • Richter, M., & Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America, 106, 19126–19131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel, A., Sagata, K., Suhardjono, Y. R., Tänzler, R., & Balke, M. (2013a). Integrative taxonomy on the fast track—towards more sustainability in biodiversity research. Frontiers in Zoology, 10, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedel, A., Sagata, K., Surbakti, S., Tänzler, R., & Balke, M. (2013b). One hundred and one new species of Trigonopterus weevils from New Guinea. ZooKeys, 280, 1–150.

    Article  PubMed  Google Scholar 

  • Riesgo, A., Andrade, S. C. S., Sharma, P. P., Novo, M., Pérez-Porro, A. R., Vahtera, V., et al. (2012). Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Frontiers in Zoology, 9, 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Fernández, J. I., de Carvalho, C. J. B., Pasquini, C., de Lima, K. M. G., Moura, M. O., & Arízaga, G. G. C. (2011). Barcoding without DNA? Species identification using near infrared spectroscopy. Zootaxa, 2933, 46–54.

    Google Scholar 

  • Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, A., Chenuil, A., et al. (2014). Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature, 515, 261–263.

    Article  CAS  PubMed  Google Scholar 

  • Roos, C., Nadler, T., & Walter, L. (2008). Mitochondrial phylogeny, taxonomy and biogeography of the silvered langur species group (Trachypithecus cristatus). Molecular Phylogenetics and Evolution, 47, 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Roos, C., Zinner, D., Kubatko, L. S., Schwarz, C., Yang, M., Meyer, D., et al. (2011). Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 11, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, M. S. (2012). Contextual cross-referencing of species names for fiddler crabs (Genus: Uca): an experiment in cyber-taxonomy. Public Library of Science ONE, 9, e101704.

    Google Scholar 

  • Rowe, K. C., Singhal, S., MacManes, M. D., Ayroles, J. F., Morelli, T. L., Rubidge, E. M., et al. (2011). Museum genomics: low-cast and high accuracy genetic data from historical specimens. Molecular Ecology Resources, 11, 1082–1092.

    Article  PubMed  Google Scholar 

  • Sauer, S., & Kliem, M. (2010). Mass spectrometry tools for the classification and identification of bacteria. Nature Reviews Microbiology, 8, 74–82.

    Article  CAS  PubMed  Google Scholar 

  • Savolainen, P., & Reeves, G. (2004). A plea for DNA banking. Science, 304, 1445.

    Article  CAS  PubMed  Google Scholar 

  • Schilthuizen, M., Scholte, C., van Wijk, R. E. J., Doimmershuijzen, J., van der Horst, D., Meijer zu Schlochtern, M., et al. (2011). Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology. Forensic Science International, 210, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, M. V., & Orchard, S. (2011). Omics technologies, data and bioinformatic principles. Methods in Molecular Biology, 719, 3–30.

    Article  CAS  PubMed  Google Scholar 

  • Schunter, C., Vollmer, S. V., Macpherson, E., & Pascual, M. (2014). Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. BMC Genomics, 15, 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehrawat, N., & Gakhar, S. K. (2014). Mosquito proteomics: present and future perspective. Research in Biotechnology, 5, 25–33.

    Google Scholar 

  • Serrano, W., Amann, R., Rosselló-Mora, R., & Fischer, U. (2010). Evaluation of the use of multilocus sequence analysis (MLSA) to resolve taxonomic conflicts within the genus Marichromatium. Systematic and Applied Microbiology, 33, 116–121.

    Article  CAS  PubMed  Google Scholar 

  • Sherwin, W. B., Frommer, M., Sved, J. A., Raphael, K. A., Oakeshott, J. G., Shearman, D. C. A., et al. (2015). Tracking invasion and invasiveness in Queensland fruit flies: from classical genetics to ‘omics’. Current Zoology, 61, 477–487.

    Article  Google Scholar 

  • Shevtsova, E., Hansson, C., Janzen, D. H., & Kjærandsen, J. (2011). Stable structural color patterns displayed on transparent insect wings. Proceedings of the National Academy of Sciences of the United States of America, 108, 668–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipway, J. R., Borges, L. M. S., Müller, J., & Cragg, S. M. (2014). The broadcast spawning Caribbean shipworm, Teredothyra dominicensis (Bivalvia, Teredinidae), has invaded and become established in the eastern Mediterranean Sea. Biological Invasions, 16, 2037–2048.

    Article  Google Scholar 

  • Skoog, D. A., Holler, F. J., & Crouch, S. R. (2006). Principles of Instrumental Analysis. Boston: Cengage Learning.

  • Soldati, L., Kergoat, G. J., Clamens, A.-L., Jourdan, H., Jabbour-Zahab, R., & Condamine, F. L. (2014). Integrative taxonomy of New Caledonian beetles: species delimitation and definition of the Uloma isoceroides species group (Coleoptera, Tenebrionidae, Ulomini), with the description of four new species. ZooKeys, 415, 133–167.

    Article  PubMed  Google Scholar 

  • Sombke, A., Lipke, E., Michalik, P., Uhl, G., & Harzsch, S. (2015). Potential and limitations of X-ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. The Journal of Comparative Neurology, 523, 1281–1295.

  • Spelda, J., Reip, H. S., Oliveira-Biener, U., & Melzer, R. R. (2011). Barcoding Fauna Bavarica—a contribution to DNA sequence-based identifications of centipedes and millipedes (Chilopoda, Diplopoda). ZooKeys, 156, 123–139.

    Article  PubMed  Google Scholar 

  • Stoev, P., Komerički, A., Akkari, N., Liu, S., Zhou, X., Weigand, A. M., et al. (2013). Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae): the first eukaryotic species description combining transcriptomic, DNA barcoding and micro-CT imaging data. Biodiversity Data Journal, 1, e1013.

    Article  PubMed  Google Scholar 

  • Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hösel, C., Kube, M., et al. (2011). Phylogenetic analyses unravel annelid evolution. Nature, 471, 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Strutzenberger, P., Brehm, G., & Fiedler, K. (2013). DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in diverse Eois (Lepidoptera: Geometridae). Public Library of Science ONE, 7, e49710.

  • Summers, M. M., Al-Hakim, I. I., & Rouse, G. W. (2014). Turbo-taxonomy: 21 new species of Myzostomida (Annelida). Zootaxa, 3873, 301–344.

    Article  PubMed  Google Scholar 

  • Tang, M., Tan, M., Meng, G., Yang, S., Su, X., Liu, S., et al. (2014). Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-genomics. Nucleic Acids Research, 42, e166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, M., Hardman, C. J., Ji, Y., Meng, G., Liu, S., Tan, M., et al. (2015). High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution. doi:10.1111/2041-210X.12416.

    Google Scholar 

  • Taylor, H. R., & Harris, W. E. (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources, 12, 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Thinh, V. N., Mootnick, A. R., Thanh, V. N., Nadler, T., & Roos, C. (2010). A new species of crested gibbon, from the central Annamite mountain range. Vietnamese Journal of Primatology, 1, 1–12.

    Google Scholar 

  • Thompson, C. C., Chimetto, L., Edwards, R. A., Swings, J., Stackebrandt, E., & Thompson, F. L. (2014). Microbial genomic taxonomy. BMC Genomics, 14, 913.

  • Valentini, A., Pompanon, F., & Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology and Evolution, 24, 110–117.

    Article  PubMed  Google Scholar 

  • van Dijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-generation sequencing technologies. Trends in Genetics, 30, 418–426.

    Article  PubMed  CAS  Google Scholar 

  • van Houdt, J. K. L., Breman, F. C., Virgilio, M., & de Meyer, M. (2010). Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources, 10, 459–465.

    Article  CAS  Google Scholar 

  • Villar, M., Popara, M., Mangold, A. J., & de la Fuente, J. (2014). Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide. Journal of Proteomics, 105, 2014–2216.

    Article  CAS  Google Scholar 

  • Volta, P., Riccardi, N., Lauceri, R., & Tonolla, M. (2012). Discrimination of freshwater fish species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS): a pilot study. Journal of Limnology, 71, 164–169.

    Article  Google Scholar 

  • von Reumont, B. M., Jenner, R. A., Wills, M. A., DellÀmpio, E., Pass, G., Ebersberger, I., et al. (2012). Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia a possible sister group of Hexapoda. Molecular Biology and Evolution, 29, 1031–1045.

    Article  CAS  Google Scholar 

  • von Reumont, B. M., Blanke, A., Richter, S., Alvarez, F., Bleidorn, C., & Jenner, R. A. (2014). The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin. Molecular Biology and Evolution, 31, 48–58.

    Article  CAS  Google Scholar 

  • Wang, X. P., Yu, L., Roos, C., Ting, N., Chen, C. P., Wang, J., et al. (2012). Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers. Public Library of Science ONE, 7, e36274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weis, A., Meyer, R., Dietz, L., Dömel, J. S., Leese, F., & Melzer, R. R. (2014). Pallenopsis patagonica (Hoek, 1881)—a species complex revealed by morphology and DNA barcoding, with description of a new species of Pallenopsis Wilson, 1881. Zoological Journal of the Linnean Society, 170, 110–131.

    Article  Google Scholar 

  • Welker, M., & Moore, E. R. B. (2011). Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Systematic and Applied Microbiology, 34, 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Wenning, M., & Scherer, S. (2013). Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Applied Microbiology and Biotechnology, 97, 7111–7120.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, Q. D., & Valdecasas, A. G. (2010). Cybertaxonomy and ecology. Nature Education Knowledge, 3, 6.

    Google Scholar 

  • Wheeler, Q. D., Bourgoin, T., Coddington, J., Gostony, T., Hamilton, A., Larimer, R., et al. (2012). Nomenclatural benchmarking: the roles of digital typification and telemicroscopy. ZooKeys, 209, 193–202.

    Article  PubMed  Google Scholar 

  • Will, K. P., Mishler, P. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54, 844–851.

    Article  PubMed  Google Scholar 

  • Wilson, D., & Alewood, P. F. (2006). Taxonomy of Australian funnel-web spiders using rp-HPLC/ESI-MS profiling techniques. Toxicon, 47, 614–627.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, N. G., Maschek, J. A., & Baker, B. J. (2013). A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. Public Library of Sciences ONE, 8, e80277.

    Google Scholar 

  • Yan, D., Luo, J. Y., Han, Y. M., Peng, C., Dong, X. P., Chen, S. L., et al. (2013). Forensic DNA barcoding and bio-response studies of animal horn products in traditional medicine. Public Library of Science ONE, 8, e55854.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America, 107, 9264–9269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata, M., Jeffrey, S. W., Wright, S. W., Rodríguez, F., Garrido, J. L., & Clementson, L. (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Marine Ecology Progress Series, 270, 83–102.

    Article  CAS  Google Scholar 

  • Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., et al. (2013). Ultra-deep sequencing enables high-fidelity recovery of biodiversity bulk arthropod samples without PCR amplification. GiagaScience, 2, 4.

    Article  CAS  Google Scholar 

  • Ziegler, A., Ogurreck, M., Steinke, T., Beckmann, F., Prohaska, S., & Ziegler, A. (2010). Opportunities and challenges for digital morphology. Biology Direct, 5, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler, A., Faber, C., Mueller, S., Nagelmann, N., & Schröder, L. (2014). A data set comprising 141 magnetic resonance imaging scans of 98 extant sea urchin species. GigaScience, 3, 31.

    Article  Google Scholar 

  • Zinner, D., Groeneveld, L. F., Keller, C., & Roos, C. (2009a). Mitochondrial phylogeography of baboons (Papio spp.)—indication for introgressive hybridization? BMC Evolutionary Biology, 9, 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zinner, D., Arnold, M. L., & Roos, C. (2009b). Is the new primate genus Rungwecebus a baboon? Public Library of Science ONE, 4, e4859.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review is in part based on the hearings and discussions within the working group “Taxonomic Research in the Era of OMICS Technologies” of the Leopoldina–Nationale Akademie der Wissenschaften (German National Academy of Sciences). We thank all participants of the working group for sharing their views and opinions. The English version of the statement “Challenges and Opportunities of Integrative Taxonomy for Research and Society” can be found here: www.leopoldina.org/en/taxonomy. We thank Terue Cristina Kihara for using the 3D model of the serolid isopod specimen, Karin Pointner for the permission to use the copepod image as well as Ortwin Bleich for his permission to use the ground beetle image taken from www.eurocarabidae.de. We also thank two anonymous reviewers for their helpful comments on the manuscript.

Ethical approval

The authors ensure that accepted principles of ethical and professional conduct have been followed. No potential conflicts of interest are given.

Conflict of interest

The authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Raupach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raupach, M.J., Amann, R., Wheeler, Q. et al. The application of “-omics” technologies for the classification and identification of animals. Org Divers Evol 16, 1–12 (2016). https://doi.org/10.1007/s13127-015-0234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0234-6

Keywords

Navigation