Skip to main content
Log in

DNA barcoding, an effective tool for species identification: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

DNA barcoding is a powerful taxonomic tool to identify and discover species. DNA barcoding utilizes one or more standardized short DNA regions for taxon identification. With the emergence of new sequencing techniques, such as Next-generation sequencing (NGS), ONT MinION nanopore sequencing, and Pac Bio sequencing, DNA barcoding has become more accurate, fast, and reliable. Rapid species identification by DNA barcodes has been used in a variety of fields, including forensic science, control of the food supply chain, and disease understanding. The Consortium for Barcode of Life (CBOL) presents various working groups to identify the universal barcode gene, such as COI in metazoans; rbcL, matK, and ITS in plants; ITS in fungi; 16S rRNA gene in bacteria and archaea, and creating a reference DNA barcode library. In this article, an attempt has been made to analyze the various proposed DNA barcode for different organisms, strengths & limitations, recent advancements in DNA barcoding, and methods to speed up the DNA barcode reference library construction. This study concludes that constructing a reference library with high species coverage would be a major step toward identifying species by DNA barcodes. This can be achieved in a short period of time by using advanced sequencing and data analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Feio MJ, Filipe AF, Garcia-Raventós A et al (2020) Advances in the use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems. Avanços no uso de ferramentas moleculares na avaliação ecológica e biodiversidade dos ecossistemas aquáticos. Limnetica. https://doi.org/10.23818/limn.39.27

    Article  Google Scholar 

  2. Schweiger AK, Cavender-Bares J, Townsend PA et al (2018) Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat Ecol Evol 2:976–982. https://doi.org/10.1038/s41559-018-0551-1

    Article  Google Scholar 

  3. Rico-Sánchez AE, Sundermann A, López-López E et al (2020) Biological diversity in protected areas: not yet known but already threatened. Glob Ecol Conserv 22:e01006. https://doi.org/10.1016/j.gecco.2020.e01006

    Article  Google Scholar 

  4. Chantangsi C, Lynn DH, Brandl MT et al (2007) Barcoding ciliates: a comprehensive study of 75 isolates of the genus Tetrahymena. Int J Syst Evol Microbiol 57:2412–2423. https://doi.org/10.1099/ijs.0.64865-0

    Article  CAS  Google Scholar 

  5. Park M-H, Jung J-H, Jo E et al (2019) Utility of mitochondrial CO1 sequences for species discrimination of Spirotrichea ciliates (Protozoa, Ciliophora). Mitochondrial DNA Part A 30:148–155. https://doi.org/10.1080/24701394.2018.1464563

    Article  CAS  Google Scholar 

  6. Xu J (2017) Fungal DNA barcoding. In: The 6th international barcode of life conference 01:913–932. https://doi.org/10.1139/gen-2016-0046@gen-iblf.issue01

  7. Comtet T, Sandionigi A, Viard F, Casiraghi M (2015) DNA (meta)barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biol Invasions 17:905–922. https://doi.org/10.1007/s10530-015-0854-y

    Article  Google Scholar 

  8. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  9. Yao H, Song J, Liu C et al (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 5:e13102. https://doi.org/10.1371/journal.pone.0013102

    Article  CAS  Google Scholar 

  10. Stoeck T, Behnke A, Christen R et al (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72. https://doi.org/10.1186/1741-7007-7-72

    Article  CAS  Google Scholar 

  11. Sire L, Gey D, Debruyne R et al (2019) The challenge of DNA barcoding saproxylic beetles in natural history collections—exploring the potential of parallel multiplex sequencing with illumina MiSeq. Front Ecol Evol. https://doi.org/10.3389/fevo.2019.00495

    Article  Google Scholar 

  12. Pawlowski J, Audic S, Adl S et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419. https://doi.org/10.1371/journal.pbio.1001419

    Article  CAS  Google Scholar 

  13. Ratnasingham S, Hebert PDN (2007) bold: the barcode of life data system. Mol Ecol Notes 7:355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

    Article  CAS  Google Scholar 

  14. Mueller RL (2006) Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Syst Biol 55:289–300. https://doi.org/10.1080/10635150500541672

    Article  Google Scholar 

  15. Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S96–S99. https://doi.org/10.1098/rsbl.2003.0025

    Article  CAS  Google Scholar 

  16. Hussain K, Rashid K, Hafeez F et al (2020) Molecular identification of sugarcane black bug (Cavelarius excavates) from Pakistan using cytochrome C oxidase I (COI) gene as DNA barcode. Int J Trop Insect Sci 40:1119–1124. https://doi.org/10.1007/s42690-020-00144-5

    Article  Google Scholar 

  17. Jackson A, Nijman V (2020) DNA barcoding of primates and the selection of molecular markers using African Great Apes as a model. J Anthropol Sci. https://doi.org/10.4436/JASS.98017

    Article  Google Scholar 

  18. Group CPW, Hollingsworth PM, Forrest LL et al (2009) A DNA barcode for land plants. PNAS 106:12794–12797. https://doi.org/10.1073/pnas.0905845106

    Article  Google Scholar 

  19. Soledispa P, Santos-Ordóñez E, Miranda M et al (2021) Molecular barcode and morphological analysis of Smilax purhampuy Ruiz. Ecuador PeerJ 9:e11028. https://doi.org/10.7717/peerj.11028

    Article  Google Scholar 

  20. Ahmed S, Ibrahim M, Nantasenamat C et al (2022) Pragmatic applications and universality of DNA barcoding for substantial organisms at species level: a review to explore a way forward. Biomed Res Int 2022:e1846485. https://doi.org/10.1155/2022/1846485

    Article  CAS  Google Scholar 

  21. Bradshaw M, Grewe F, Thomas A et al (2020) Characterizing the ribosomal tandem repeat and its utility as a DNA barcode in lichen-forming fungi. BMC Evol Biol 20:2. https://doi.org/10.1186/s12862-019-1571-4

    Article  CAS  Google Scholar 

  22. Stielow JB, Lévesque CA, Seifert KA et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263. https://doi.org/10.3767/003158515X689135

    Article  CAS  Google Scholar 

  23. Aoki W, Watanabe M, Watanabe M et al (2020) Discrimination between edible and poisonous mushrooms among Japanese Entoloma sarcopum and related species based on phylogenetic analysis and insertion/deletion patterns of nucleotide sequences of the cytochrome oxidase 1 gene. Genes Genet Syst. https://doi.org/10.1266/ggs.19-00032

    Article  Google Scholar 

  24. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  Google Scholar 

  25. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–2425. https://doi.org/10.1038/ismej.2017.122

    Article  Google Scholar 

  26. Chaban B, Hill JE (2012) A ‘universal’ type II chaperonin PCR detection system for the investigation of Archaea in complex microbial communities. ISME J 6:430–439. https://doi.org/10.1038/ismej.2011.96

    Article  CAS  Google Scholar 

  27. Zeigler DRY (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900. https://doi.org/10.1099/ijs.0.02713-0

    Article  CAS  Google Scholar 

  28. Liu Y-F, Mbadinga SM, Gu J-D, Mu B-Z (2017) Type II chaperonin gene as a complementary barcode for 16S rRNA gene in study of Archaea diversity of petroleum reservoirs. Int Biodeterior Biodegrad 123:113–120. https://doi.org/10.1016/j.ibiod.2017.04.015

    Article  CAS  Google Scholar 

  29. Bukin YS, Galachyants YP, Morozov IV et al (2019) The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 6:190007. https://doi.org/10.1038/sdata.2019.7

    Article  CAS  Google Scholar 

  30. Ogier J-C, Pagès S, Galan M et al (2019) rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 19:171. https://doi.org/10.1186/s12866-019-1546-z

    Article  CAS  Google Scholar 

  31. Purty RS, Chatterjee S (2016) DNA barcoding: an effective technique in molecular taxonomy. Austin J Biotechnol Bioeng 3:1059

    Google Scholar 

  32. Schneider KL, Marrero G, Alvarez AM, Presting GG (2011) Classification of plant associated bacteria using RIF, a computationally derived DNA marker. PLoS ONE 6:e18496. https://doi.org/10.1371/journal.pone.0018496

    Article  CAS  Google Scholar 

  33. Vancuren SJ, Santos SJD, Hill JE, Team the MMLP (2020) Evaluation of variant calling for cpn60 barcode sequence-based microbiome profiling. PLoS ONE 15:e0235682. https://doi.org/10.1371/journal.pone.0235682

    Article  CAS  Google Scholar 

  34. Zhan Z, Li J, Xu K (2019) Ciliate Environmental diversity can be underestimated by the V4 Region of SSU rDNA: insights from species delimitation and multilocus phylogeny of pseudokeronopsis (Protist, Ciliophora). Microorganisms 7:493. https://doi.org/10.3390/microorganisms7110493

    Article  CAS  Google Scholar 

  35. Lin S, Hu Z, Deng Y et al (2020) An assessment on the intrapopulational and intraindividual genetic diversity in LSU rDNA in the harmful algal blooms-forming dinoflagellate Margalefidinium (= Cochlodinium) fulvescens based on clonal cultures and bloom samples from Jiaozhou Bay. China Harmful Algae 96:101821. https://doi.org/10.1016/j.hal.2020.101821

    Article  CAS  Google Scholar 

  36. Zhang T, Fan X, Gao F et al (2019) Further analyses on the phylogeny of the subclass Scuticociliatia (Protozoa, Ciliophora) based on both nuclear and mitochondrial data. Mol Phylogenet Evol 139:106565. https://doi.org/10.1016/j.ympev.2019.106565

    Article  CAS  Google Scholar 

  37. Zhao Y, Yi Z, Gentekaki E et al (2016) Utility of combining morphological characters, nuclear and mitochondrial genes: An attempt to resolve the conflicts of species identification for ciliated protists. Mol Phylogenet Evol 94:718–729. https://doi.org/10.1016/j.ympev.2015.10.017

    Article  Google Scholar 

  38. Stern RF, Andersen RA, Jameson I et al (2012) Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS ONE 7:e42780. https://doi.org/10.1371/journal.pone.0042780

    Article  CAS  Google Scholar 

  39. Choi J, Park JS (2020) Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci Rep 10:6519. https://doi.org/10.1038/s41598-020-63561-z

    Article  CAS  Google Scholar 

  40. Mordret S, Piredda R, Vaulot D et al (2018) dinoref: a curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Mol Ecol Resour 18:974–987. https://doi.org/10.1111/1755-0998.12781

    Article  CAS  Google Scholar 

  41. Zimmermann J, Jahn R, Gemeinholzer B (2011) Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org Divers Evol 11:173. https://doi.org/10.1007/s13127-011-0050-6

    Article  Google Scholar 

  42. Forster D, Filker S, Kochems R et al (2019) A comparison of different ciliate metabarcode genes as bioindicators for environmental impact assessments of salmon aquaculture. J Eukaryot Microbiol 66:294–308. https://doi.org/10.1111/jeu.12670

    Article  CAS  Google Scholar 

  43. Hamsher SE, Evans KM, Mann DG et al (2011) Barcoding diatoms: exploring alternatives to COI-5P. Protist 162:405–422. https://doi.org/10.1016/j.protis.2010.09.005

    Article  CAS  Google Scholar 

  44. Cuypers B, Domagalska MA, Meysman P et al (2017) Multiplexed spliced-leader sequencing: a high-throughput, selective method for RNA-seq in trypanosomatids. Sci Rep 7:3725. https://doi.org/10.1038/s41598-017-03987-0

    Article  CAS  Google Scholar 

  45. Abraham JS, Sripoorna S, Maurya S et al (2019) Techniques and tools for species identification in ciliates: a review. Int J Syst Evol Microbiol 69:877–894. https://doi.org/10.1099/ijsem.0.003176

    Article  CAS  Google Scholar 

  46. Strüder-Kypke MC, Lynn DH (2010) Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Syst Biodivers 8:131–148. https://doi.org/10.1080/14772000903507744

    Article  Google Scholar 

  47. Wang P, Gao F, Huang J et al (2015) A case study to estimate the applicability of secondary structures of SSU-rRNA gene in taxonomy and phylogenetic analyses of ciliates. Zool Scr 44:574–585. https://doi.org/10.1111/zsc.12122

    Article  Google Scholar 

  48. Shazib SUA, Vďačný P, Kim JH et al (2016) Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Mol Phylogenet Evol 102:128–144. https://doi.org/10.1016/j.ympev.2016.05.041

    Article  Google Scholar 

  49. Sun P, Clamp JC, Xu D et al (2013) An ITS-based phylogenetic framework for the genus Vorticella: finding the molecular and morphological gaps in a taxonomically difficult group. Proc R Soc B 280:20131177. https://doi.org/10.1098/rspb.2013.1177

    Article  Google Scholar 

  50. Wylezich C, Nies G, Mylnikov AP et al (2010) An evaluation of the use of the LSU rRNA D1–D5 domain for DNA-based taxonomy of eukaryotic protists. Protist 161:342–352. https://doi.org/10.1016/j.protis.2010.01.003

    Article  CAS  Google Scholar 

  51. Santoferrara LF, McManus GB, Alder VA (2013) Utility of genetic markers and morphology for species discrimination within the order Tintinnida (Ciliophora, Spirotrichea). Protist 164:24–36. https://doi.org/10.1016/j.protis.2011.12.002

    Article  Google Scholar 

  52. Stoeck T, Przybos E, Dunthorn M (2014) The D1–D2 region of the large subunit ribosomal DNA as barcode for ciliates. Mol Ecol Resour 14:458–468. https://doi.org/10.1111/1755-0998.12195

    Article  CAS  Google Scholar 

  53. Tasneem F, Shakoori FR (2017) Phylogenetic relationship of locally isolated paramecium species inferred from histone H4 genes. Pak J Zool. https://doi.org/10.17582/journal.pjz/2017.49.5.1767.1774

    Article  Google Scholar 

  54. Santoferrara L, Burki F, Filker S et al (2020) Perspectives from ten years of protist studies by high-throughput metabarcoding. J Eukaryot Microbiol 67:612–622. https://doi.org/10.1111/jeu.12813

    Article  Google Scholar 

  55. Grant DM, Brodnicke OB, Evankow AM et al (2021) The future of DNA barcoding: reflections from early career researchers. Diversity 13:313. https://doi.org/10.3390/d13070313

    Article  CAS  Google Scholar 

  56. Gong S, Ding Y, Wang Y et al (2018) Advances in DNA barcoding of toxic marine organisms. Int J Mol Sci 19:2931. https://doi.org/10.3390/ijms19102931

    Article  CAS  Google Scholar 

  57. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117. https://doi.org/10.1016/j.tree.2008.09.011

    Article  Google Scholar 

  58. Liu M, Clarke LJ, Baker SC et al (2020) A practical guide to DNA metabarcoding for entomological ecologists. Ecol Entomol 45:373–385. https://doi.org/10.1111/een.12831

    Article  Google Scholar 

  59. Braukmann TWA, Ivanova NV, Prosser SWJ et al (2019) Metabarcoding a diverse arthropod mock community. Mol Ecol Resour 19:711–727. https://doi.org/10.1111/1755-0998.13008

    Article  CAS  Google Scholar 

  60. Medlin LK, Orozco J (2017) Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17:1184. https://doi.org/10.3390/s17051184

    Article  CAS  Google Scholar 

  61. Kappel K, Eschbach E, Fischer M, Fritsche J (2020) Design of a user-friendly and rapid DNA microarray assay for the authentication of ten important food fish species. Food Chem 311:125884. https://doi.org/10.1016/j.foodchem.2019.125884

    Article  CAS  Google Scholar 

  62. Kochzius M, Seidel C, Antoniou A et al (2010) Identifying fishes through DNA barcodes and microarrays. PLoS ONE 5:e12620. https://doi.org/10.1371/journal.pone.0012620

    Article  CAS  Google Scholar 

  63. Teletchea F, Bernillon J, Duffraisse M et al (2008) Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 45:967–975. https://doi.org/10.1111/j.1365-2664.2007.01415.x

    Article  CAS  Google Scholar 

  64. Liao Y-C, Cheng H-W, Wu H-C et al (2019) Completing circular bacterial genomes with assembly complexity by using a sampling strategy from a single MinION run with barcoding. Front Microbiol 10:2068. https://doi.org/10.3389/fmicb.2019.02068

    Article  Google Scholar 

  65. Wang WY, Srivathsan A, Foo M et al (2018) Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: validating a reverse workflow for specimen processing. Mol Ecol Resour 18:490–501. https://doi.org/10.1111/1755-0998.12751

    Article  CAS  Google Scholar 

  66. Li R, Xie M, Dong N et al (2018) Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data. GigaScience. https://doi.org/10.1093/gigascience/gix132

    Article  Google Scholar 

  67. Parker J, Helmstetter AJ, Devey D et al (2017) Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci Rep 7:8345. https://doi.org/10.1038/s41598-017-08461-5

    Article  CAS  Google Scholar 

  68. Srivathsan A, Baloğlu B, Wang W et al (2018) A MinION™-based pipeline for fast and cost-effective DNA barcoding. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12890

    Article  Google Scholar 

  69. Burton AS, Stahl SE, John KK et al (2020) Off earth identification of bacterial populations using 16S rDNA nanopore sequencing. Genes 11:76. https://doi.org/10.3390/genes11010076

    Article  CAS  Google Scholar 

  70. Zhang H, Xu H, Liu H et al (2020) PacBio single molecule long-read sequencing provides insight into the complexity and diversity of the Pinctada fucata martensii transcriptome. BMC Genomics 21:481. https://doi.org/10.1186/s12864-020-06894-3

    Article  CAS  Google Scholar 

  71. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289. https://doi.org/10.1016/j.gpb.2015.08.002

    Article  Google Scholar 

  72. Tedersoo L, Tooming-Klunderud A, Anslan S (2018) PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol 217:1370–1385. https://doi.org/10.1111/nph.14776

    Article  CAS  Google Scholar 

  73. Yssouf A, Almeras L, Raoult D, Parola P (2016) Emerging tools for identification of arthropod vectors. Fut Microbiol 11:549–566. https://doi.org/10.2217/fmb.16.5

    Article  CAS  Google Scholar 

  74. Dridi B, Raoult D, Drancourt M (2012) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 120:85–91. https://doi.org/10.1111/j.1600-0463.2011.02833.x

    Article  CAS  Google Scholar 

  75. Munir S, Ahmed S, Ibrahim M et al (2020) A spellbinding interplay between biological barcoding and nanotechnology. Front Bioeng Biotechnol 8:883. https://doi.org/10.3389/fbioe.2020.00883

    Article  Google Scholar 

  76. Yin H, Jia M, Yang S et al (2012) A nanoparticle-based bio-barcode assay for ultrasensitive detection of ricin toxin. Toxicon 59:12–16. https://doi.org/10.1016/j.toxicon.2011.10.003

    Article  CAS  Google Scholar 

  77. Amini B, Kamali M, Salouti M, Yaghmaei P (2017) Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence. Biosens Bioelectron 92:679–686. https://doi.org/10.1016/j.bios.2016.10.030

    Article  CAS  Google Scholar 

  78. Ding S, Wang L, He Z et al (2021) Identifying exogenous DNA in liquid foods by gold nanoparticles: potential applications in traceability. ACS Food Sci Technol 1:605–613. https://doi.org/10.1021/acsfoodscitech.1c00048

    Article  CAS  Google Scholar 

  79. Valentini P, Galimberti A, Mezzasalma V et al (2017) DNA barcoding meets nanotechnology: development of a universal colorimetric test for food authentication. Angew Chem Int Ed 56:8094–8098. https://doi.org/10.1002/anie.201702120

    Article  CAS  Google Scholar 

  80. Taboada L, Sánchez A, Pérez-Martín RI, Sotelo CG (2017) A new method for the rapid detection of Atlantic cod (Gadus morhua), Pacific cod (Gadus macrocephalus), Alaska pollock (Gadus chalcogrammus) and ling (Molva molva) using a lateral flow dipstick assay. Food Chem 233:182–189. https://doi.org/10.1016/j.foodchem.2017.04.087

    Article  CAS  Google Scholar 

  81. Schlenker C, Brooks J, Oostra K, McLaughlin R (2017) whole sample next-generation DNA sequencing method: an alternative to DNA barcoding. In: FoodSafetyTech. https://foodsafetytech.com/feature_article/whole-sample-next-generation-dna-sequencing-method-alternative-dna-barcoding/. Accessed 19 Jul 2022

  82. Crampton-Platt A, Yu DW, Zhou X, Vogler AP (2016) Mitochondrial metagenomics: letting the genes out of the bottle. GigaScience. https://doi.org/10.1186/s13742-016-0120-y

    Article  Google Scholar 

  83. Jiang M, Xu S-F, Tang T-S et al (2022) Development and evaluation of a meat mitochondrial metagenomic (3MG) method for composition determination of meat from fifteen mammalian and avian species. BMC Genomics 23:36. https://doi.org/10.1186/s12864-021-08263-0

    Article  CAS  Google Scholar 

  84. Ji Y, Huotari T, Roslin T et al (2020) SPIKEPIPE: a metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol Ecol Resour 20:256–267. https://doi.org/10.1111/1755-0998.13057

    Article  CAS  Google Scholar 

  85. Yang Z, Rannala B (2016) Species identification by bayesian fingerprinting: a powerful alternative to DNA barcoding. 041608

  86. Obringer R, Rachunok B, Maia-Silva D et al (2021) The overlooked environmental footprint of increasing Internet use. Resour Conserv Recycl 167:105389. https://doi.org/10.1016/j.resconrec.2020.105389

    Article  Google Scholar 

  87. Liu Y, Xu C, Sun Y et al (2021) Method for quick DNA barcode reference library construction. Ecol Evol 11:11627–11638. https://doi.org/10.1002/ece3.7788

    Article  Google Scholar 

  88. Guo J, Cheng T, Xu H et al (2019) An efficient and cost-effective method for primer-induced nucleotide labeling for massive sequencing on next-generation sequencing platforms. Sci Rep 9:3125. https://doi.org/10.1038/s41598-019-38996-8

    Article  CAS  Google Scholar 

  89. Marine RL, Magaña LC, Castro CJ et al (2020) Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. J Virol Methods 280:113865. https://doi.org/10.1016/j.jviromet.2020.113865

    Article  CAS  Google Scholar 

  90. Speranskaya AS, Khafizov K, Ayginin AA et al (2018) Comparative analysis of Illumina and Ion Torrent high-throughput sequencing platforms for identification of plant components in herbal teas. Food Control 93:315–324. https://doi.org/10.1016/j.foodcont.2018.04.040

    Article  CAS  Google Scholar 

  91. Janzen DH, Hallwachs W, Pereira G et al (2020) Using DNA-barcoded Malaise trap samples to measure impact of a geothermal energy project on the biodiversity of a Costa Rican old-growth rain forest. Genome 63:407–436. https://doi.org/10.1139/gen-2020-0002

    Article  Google Scholar 

  92. Martínez-Arce A, De Jesús-Navarrete A, Leasi F (2020) DNA barcoding for delimitation of putative mexican marine nematodes species. Diversity 12:107. https://doi.org/10.3390/d12030107

    Article  CAS  Google Scholar 

  93. Hou F, Wen L, Peng C, Guo J (2018) Identification of marine traditional Chinese medicine dried seahorses in the traditional Chinese medicine market using DNA barcoding. Mitochondrial DNA Part A 29:107–112. https://doi.org/10.1080/24701394.2016.1248430

    Article  CAS  Google Scholar 

  94. Minoudi S, Karaiskou N, Avgeris M et al (2020) Seafood mislabeling in Greek market using DNA barcoding. Food Control 113:107213. https://doi.org/10.1016/j.foodcont.2020.107213

    Article  CAS  Google Scholar 

  95. Burrell AS, Jolly CJ, Tosi AJ, Disotell TR (2009) Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Mol Phylogenet Evol 51:340–348. https://doi.org/10.1016/j.ympev.2009.02.004

    Article  CAS  Google Scholar 

  96. Osathanunkul M, Suwannapoom C, Osathanunkul K et al (2016) Evaluation of DNA barcoding coupled high resolution melting for discrimination of closely related species in phytopharmaceuticals. Phytomedicine 23:156–165. https://doi.org/10.1016/j.phymed.2015.11.018

    Article  CAS  Google Scholar 

  97. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.1080/00275514.1999.12061051

    Article  CAS  Google Scholar 

  98. Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98. https://doi.org/10.1080/15572536.2006.11832842

    Article  CAS  Google Scholar 

  99. Siddiqui ZH, Abbas ZK, Hakeem KR et al (2020) A molecular assessment of red algae with reference to the utility of DNA barcoding. In: Trivedi S, Rehman H, Saggu S et al (eds) DNA barcoding and molecular phylogeny. Springer, Cham, pp 103–118

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors appreciate the facilities provided by the Principal, Acharya Narendra Dev College, University of Delhi for carrying out the present study. The authors also thankfully acknowledge the financial support provided by CSIR (Council of Scientific and Industrial Research) to Sandeep Antil, Jeeva Susan Abraham, Swati Maurya, and UGC (University Grants Commission) to Sripoorna Somasundaram and DST-SERB (Department of Science and Technology-Science and Engineering Research Board) to Jyoti Dagar.

Funding

This study sponsored by CSIR (Council of Scientific and Industrial Research), UGC (University Grants Commission), DST-SERB (Department of Science and Technology-Science and Engineering Research Board) and DBT (Department of Biotechnology) STAR College Scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to designing the study. The first draft of manuscript was written by Sandeep Antil and all the authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ravi Toteja.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies conducted on humans and or vertebrate animals.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antil, S., Abraham, J.S., Sripoorna, S. et al. DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep 50, 761–775 (2023). https://doi.org/10.1007/s11033-022-08015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08015-7

Keywords

Navigation