Skip to main content

Omics Technologies, Data and Bioinformatics Principles

  • Protocol
  • First Online:
Bioinformatics for Omics Data

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

We provide an overview on the state of the art for the Omics technologies, the types of omics data and the bioinformatics resources relevant and related to Omics. We also illustrate the bioinformatics challenges of dealing with high-throughput data. This overview touches several fundamental aspects of Omics and bioinformatics: data standardisation, data sharing, storing Omics data appropriately and exploring Omics data in bioinformatics. Though the principles and concepts presented are true for the various different technological fields, we concentrate in three main Omics fields namely: genomics, transcriptomics and proteomics. Finally we address the integration of Omics data, and provide several useful links for bioinformatics and Omics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knasmüller, S. et al. (2008) Use of conventional and -omics based methods for health claims of dietary antioxidants: A critical overview. Br J Nutr 99, ES3–52.

    Article  PubMed  Google Scholar 

  2. Hillieret, L.W. et al. (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5, 183–88.

    Article  Google Scholar 

  3. Johnson, D.S. et al. (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1441–42.

    Article  Google Scholar 

  4. Mortazavi, A. et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621–8.

    Article  PubMed  CAS  Google Scholar 

  5. Rustici, G. et al. (2008) Data storage and analysis in ArrayExpress and Expression Profiler. Curr Protoc Bioinformatics 7, 7–13.

    Google Scholar 

  6. Whetzel, P.L. et al. (2006) The MGED Ontology: A resource for semantics-based description of microarray experiments. Bioinformatics 22, 866–73.

    Article  PubMed  CAS  Google Scholar 

  7. Burge, C., Birney, E., and Fickett, J. (2002) Top 10 future challenges for bioinformatics. Genome Technol 17, 1–3.

    Google Scholar 

  8. Havlak, P. et al. (2004) The Atlas genome assembly system. Genome Res 14, 721–32.

    Article  PubMed  CAS  Google Scholar 

  9. Batzoglou, S. et al. (2002) ARACHNE: A whole genome shotgun assembler. Genome Res 12, 177–89.

    Article  PubMed  CAS  Google Scholar 

  10. Myers, E.W. et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–204.

    Article  PubMed  CAS  Google Scholar 

  11. Huang, X. et al. (2003) PCAP: A whole-genome assembly program. Genome Res 13, 2164–70.

    Article  PubMed  CAS  Google Scholar 

  12. Mullikin, J.C., and Ning, Z. (2003) The Phusion assembler. Genome Res 13, 81–90.

    Article  PubMed  CAS  Google Scholar 

  13. Pevzner, P.A., Tang, H., and Waterman, M.S. (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci USA 14, 9748–53.

    Article  Google Scholar 

  14. Hernandez, D. et al. (2008) De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Res 18, 802–9.

    Article  PubMed  CAS  Google Scholar 

  15. Idury, R., and Waterman, M. (1995) A new algorithm for DNA sequence assembly. J Comput Biol 2, 291–306.

    Article  PubMed  CAS  Google Scholar 

  16. Pevzner, P., and Tang, H. (2001) Fragment assembly with double-barrelled data. Bioinformatics 17, S225–33.

    PubMed  Google Scholar 

  17. Chaisson, M.J., and Pevzner, P.A. (2008) Short read fragment assembly of bacterial genomes. Genome Res 18, 324–30.

    Article  PubMed  CAS  Google Scholar 

  18. Zerbino, D.R., and Birney, E. (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ossowski, S. et al. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18, 2024–33.

    Article  PubMed  CAS  Google Scholar 

  20. Farrer, R.A. et al. (2009) De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol Lett 1, 103–11.

    Article  Google Scholar 

  21. Wakaguri, H. et al. (2008) DBTSS: Database of transcription start sites, progress report. Nucleic Acids Res 36, D97–101.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, X. et al. (2009) High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol 1, 165–75.

    Article  PubMed  CAS  Google Scholar 

  23. Butler, J. et al. (2008) ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res 18, 810–20.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, J., and Skiena, S. (2007) Assembly for double-ended short-read sequencing technologies. In ‘Advances in Genome Sequencing Technology and Algorithms’, edited by E. Mardis, S. Kim, and H. Tang. Artech House Publishers, Boston.

    Google Scholar 

  25. Simpson, J.T. et al. (2009) ABySS: A parallel assembler for short read sequence data. Genome Res 9, 1117–23.

    Article  Google Scholar 

  26. Jackson, B.G., Schnable, P.S., and Aluru, S. (2009) Parallel short sequence assembly of transcriptomes. BMC Bioinformatics 10, S1–14.

    Article  Google Scholar 

  27. Spudich, G., Fernandez-Suarez, X.M., and Birney, E. (2007) Genome browsing with Ensembl: A practical overview. Brief Funct Genomic Proteomic 6, 202–19.

    Article  PubMed  CAS  Google Scholar 

  28. Vizcaíno, J.A. et al. (2009) A guide to the Proteomics Identifications Database proteomics data repository. Proteomics 9, 4276–83.

    Article  PubMed  Google Scholar 

  29. Hunter, S. et al. (2009) InterPro: The integrative protein signature database. Nucleic Acids Res 37, 211–15.

    Article  Google Scholar 

  30. Cesareni, G. et al. (2005) Comparative interatcomics. FEBS Lett 579, 1828–33.

    Article  PubMed  CAS  Google Scholar 

  31. Brazma, A. et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29, 365–71.

    Article  PubMed  CAS  Google Scholar 

  32. Levy, S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol 5, 2113–44.

    Article  CAS  Google Scholar 

  33. Wheeler, D.A. et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–76.

    Article  PubMed  CAS  Google Scholar 

  34. Venter, J.C. et al. (2001) The sequence of the human genome. Science 291, 1304–51.

    Article  PubMed  CAS  Google Scholar 

  35. Spencer, C.C. et al. (2006) The influence of recombination on human genetic diversity. PLoS Genet 2, e148.

    Article  PubMed  Google Scholar 

  36. Brazma, A. et al. (2003) ArrayExpress – A public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31, 68–71.

    Article  PubMed  CAS  Google Scholar 

  37. Edgar, R., Domrachev, M., and Lash, A.E. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30, 207–10.

    Article  PubMed  CAS  Google Scholar 

  38. Ikeo, K. et al. (2003) CIBEX: Center for information biology gene expression database. C R Biol 326, 1079–82.

    Article  PubMed  CAS  Google Scholar 

  39. Parkinson, H. et al. (2009) ArrayExpress update – From an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 37, 868–72.

    Article  Google Scholar 

  40. Aranda, B. et al. (2009) The IntAct molecular interaction database. Nucleic Acid Res. 1–7 doi:10.1093/nar/gkp878.

    Google Scholar 

  41. Orchard, O. et al. (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25, 894–8.

    Article  PubMed  CAS  Google Scholar 

  42. Kiemer, L., and Cesareni, G. (2007) Comparative interactomics: Comparing apples and pears? Trends Biotechnol 25, 448–54.

    Article  PubMed  CAS  Google Scholar 

  43. Kiemer, L. et al. (2007) WI-PHI: A weighted yeast interactome enriched for direct physical interactions. Proteomics 7, 932–43.

    Article  PubMed  CAS  Google Scholar 

  44. Joyce, A.R., and Palsson, B.Ø. (2006) The model organism as a system: Integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7, 198–210.

    Article  PubMed  CAS  Google Scholar 

  45. Akula, S.P. et al. (2009) Techniques for integrating -omics Data. Bioinformation 3, 284–6.

    PubMed  Google Scholar 

  46. Haider, S. et al. (2009) BioMart Central Portal – Unified access to biological data. Nucleic Acids Res 1, W23–27.

    Article  Google Scholar 

  47. Li, P. et al. (2008) Performing statistical ­analyses on quantitative data in Taverna workflows: An example using R and maxdBrowse to identify differentially-expressed genes from microarray data. BMC Bioinformatics 9, 334.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Gabriella Rustici and Dr. Daniel Zerbino for useful insights and information on transcriptomics and genome assembly respectively. The authors would also like to thank Dr. James Watson for useful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schneider, M.V., Orchard, S. (2011). Omics Technologies, Data and Bioinformatics Principles. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics