Skip to main content
Log in

Analysis of Insect Cuticular Hydrocarbons Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insect cuticular hydrocarbons (CHCs) were probed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry with a lithium 2,5-dihydroxybenzoate matrix. CHC profiles were obtained for 12 species of diverse insect taxa (termites, ants, a cockroach, and a flesh fly). MALDI spectra revealed the presence of high molecular weight CHCs on the insect cuticle. Hydrocarbons with more than 70 carbon atoms, both saturated and unsaturated, were detected. When compared with gas chromatography/mass spectrometry (GC/MS), MALDI-TOF covered a wider range of CHCs and enabled CHCs of considerably higher molecular weight to be detected. Good congruity between GC/MS and MALDI-TOF was observed in the overlapping region of molecular weights. Moreover, a number of previously undiscovered hydrocarbons were detected in the high mass range beyond the analytical capabilities of current GC/MS instruments. MALDI was shown to hold potential to become an alternative analytical method for insect CHC analyses. The ability of MALDI to discriminate among species varying in the degree of their relatedness was found to be similar to GC/MS. However, neither MALDI-MS nor GC/MS data were able to describe the phylogenetic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armold, M. T. and Regnier, F. E. 1975. A developmental study of the cuticular hydrocarbons of Sarcophaga bullata. J. Insect Physiol. 21:1827–1833.

    Article  PubMed  CAS  Google Scholar 

  • Bagine, R. K. N., Brandl, R., and Kaib, M. 1994. Species delimitation in Macrotermes (Isoptera: Macrotermitidae): Evidence from epicuticular hydrocarbons, morphology, and ecology. Ann. Entomol. Soc. Am. 87:498–506.

    Google Scholar 

  • Blomquist, G. J. and Dillwith, J. W. 1985. Cuticular lipids, pp. 117–154, in G.A. Kerkut, and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 3. Integument, Respiration and Circulation. Pergamon Press, Oxford.

    Google Scholar 

  • Blomquist, G. J., Tillman, J. A., Mpuru, S., and Seybold, S. J. 1998. Nestmate recognition in termites, pp. 34–54, in R.K. Vander Meer, M.D. Breed, M.L. Winston, and K. Espelie (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Westview Press, Boulder, CO.

    Google Scholar 

  • Chapman, N. F. 1998. The Insects. Structure and Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clément, J.-L. and Bagnères, A.-G. 1998. Nestmate recognition in termites, pp. 125–155, in R.K. Vander Meer, M.D. Breed, M.L. Winston, and K. Espelie (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Westview Press, Boulder, CO.

    Google Scholar 

  • Cvačka, J. and Svatoš, A. 2003. Matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2,5-dihydroxybenzoate matrix. Rapid Commun. Mass Spectrom. 17:2203–2207.

    Article  PubMed  Google Scholar 

  • Doolittle, R. E., Proveaux, A. T., Alborn, H. T., Heath, R. R. 1995. Quadrupole storage mass spectrometry of mono- and dimethylalkanes. J. Chem. Ecol. 21:1677–1695.

    Article  CAS  Google Scholar 

  • Dutta, T. K. and Harayama, S. 2001. Time-of-flight mass spectrometric analysis of high-molecular-weight alkanes in crude oil by silver nitrate chemical ionization after laser desorption. Anal. Chem. 73:864–869.

    Article  PubMed  CAS  Google Scholar 

  • Esser, E., Keil, C., Braun, D., Montag, P., and Pasch, H. 2000. Matrix-assisted laser desorption/ionization mass spectrometry of synthetic polymers. 4. Coupling of size exclusion chromatography and MALDI-TOF using a spray-deposition interface. Polymer 41:4039–4046.

    Article  CAS  Google Scholar 

  • Golden, K. L., Meinke, L. J., and Stanley-Samuelson, D. W. 1992. Cuticular hydrocarbon discrimination of Diabrotica (Coleoptera: Chrysomelidae) sibling species. Ann. Entomol. Soc. Am. 85:561–570.

    CAS  Google Scholar 

  • Grunshawn, J. P., Guermouche, H., Guermouche, S., Jago, N. D., Jullien, R., Knowles, E., and Perez, F. 1990. Chemical taxonomic studies of cuticular hydrocarbons in locusts of the Schistocerca americana complex: Chemical relationships between New World and Old World species. J. Chem. Ecol. 16:2835–3858.

    Article  Google Scholar 

  • Gush, T. J., Bentley, B. L., Prestwich, G. D., and Thorne, B. L. 1985. Chemical variation in defensive secretions of four species of Nasutitermes. Biochem. Syst. Ecol. 13:329–336.

    Article  CAS  Google Scholar 

  • Hadley, N. F. 1985. The Adaptive Role of Lipids in Biological Systems. Wiley, New York.

    Google Scholar 

  • Hanton, S. D., Hyder, I. Z., Stets, J. R., Owens, K. G., Blair, W. R., Guttman, C. M., and Giuseppetti, A. A. 2004. Investigations of electrospray sample deposition for polymer MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 15:168–179.

    Article  PubMed  CAS  Google Scholar 

  • Haverty, M. I., Nelson, L. J., and Page, M. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Similarities and origin of Introductions. J. Chem. Ecol. 16:1635–1647.

    Article  CAS  Google Scholar 

  • Haverty, M. I., Forschler, B. T., and Nelson, L. J. 1996. An assessment of the taxonomy of Reticulitermes (Isoptera: Rhinotermitidae) from the southeastern United States based on cuticular hydrocarbons. Sociobiology 28:287–318.

    Google Scholar 

  • Haverty, M. I., and Nelson, L. J. 1997. Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) from Northern California indicate undescribed species. Comp. Biochem. Physiol. 118B:869–880.

    CAS  Google Scholar 

  • Haverty, M. I., Woodrow, R.J., Nelson, L.J., and Grace, J.K. 2000. Cuticular hydrocarbons of termites of the Hawaiian Islands. J. Chem. Ecol. 26:1167–1191.

    Article  CAS  Google Scholar 

  • Howard, R. W., and Blomquist, G. J. 1982. Chemical ecology and biochemistry of insect hydrocarbons. Annu. Rev. Entomol. 27:149–172.

    Article  CAS  Google Scholar 

  • Howard, R. W., and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, L. L. 1972. Cuticular lipids of insects. IV. Hydrocarbons of the cockroaches Periplaneta japonica and Periplaneta americana compared to other cockroach hydrocarbons. Comp. Biochem. Physiol. 41B:331–336.

    Google Scholar 

  • Jackson, L. L., Armold, M.T. and, Regnier, F.E. 1974. Cuticular lipids of adult fleshflies, Sarcophaga bullata. Insect Biochem. 4:369–379.

    Article  CAS  Google Scholar 

  • Jackson, L. L., and Blomquist, G. J. 1976. Insect waxes, pp. 201–233, in P.E. Kolatukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, Holland.

    Google Scholar 

  • Kaib, M., Brandl, R., and Bagine, R. K. N. 1991. Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176–179.

    Article  CAS  Google Scholar 

  • Katritzky, A.R., Chen. K., Maran. U., and Carlson, D. A. 2000. QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 72:101–109.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, G.,Weidner, S., Just, U., and Hohner, G. 1996. Characterization of technical waxes—comparison of chromatographic techniques and matrix-assisted laser-desorption/ionization mass spectrometry. J. Chromatogr. A 732:111–117.

    Article  Google Scholar 

  • Kutnik, M., Uva, P., Brinkworth, L., and Bagneres, A.-G., 2004. Phylogeography of two European Reticulitermes (Isoptera) species: the Iberian refugium. Mol. Ecol. 13: 3099–3113.

    Article  PubMed  CAS  Google Scholar 

  • Lahav, S., Soroker, V., Hefetz, A., and Vander Meer, R. K. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschatfen 86:246–249.

    Article  CAS  Google Scholar 

  • Lenoir, A., D’Ettorre, P., Errard, C., and Hefetz, A. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599.

    Article  PubMed  CAS  Google Scholar 

  • Lockey, K. H. 1985. Insect cuticular lipids. Comp. Biochem. Physiol. B 81:263–273.

    Article  Google Scholar 

  • Lockey, K. H. 1988. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol. B 89:595–645.

    Article  Google Scholar 

  • Martin, M. M., MacConnell, J. G. 1970. The alkanes of the ant, Atta colombica. Tetrahedron 26:307–319.

    Article  CAS  Google Scholar 

  • Nei, M. 1972. Genetic distance estimates between populations. Am. Nat. 106:283–292.

    Article  Google Scholar 

  • Nelson, D. R., Dillwith, J. W., and Blomquist, G. J. 1981. Cuticular hydrocarbons of the housefly Musca domestica. Insect Biochem. 11:187–197.

    Article  CAS  Google Scholar 

  • Nowbahari, E., Lenoir, A., Clément, J.L., Lange, C., Bagnères, A.G., and Joulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): Their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–73.

    Article  CAS  Google Scholar 

  • Planeta, J., Řehulka, P., and Chmelík, J. 2002. Sample deposition device for off-line combination of supercritical fluid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 74:3911–3914.

    Article  PubMed  CAS  Google Scholar 

  • Pruns, J. K., Vietzke, J.-P., Strassner, M., Rapp, C., Hintze, U., and König, W.A. 2002. Characterization of low molecular weight hydrocarbon oligomers by laser desorption/ionization time-of-flight mass spectrometry using a solvent-free sample preparation method. Rapid Commun. Mass Spectrom. 16:208–211.

    Article  PubMed  CAS  Google Scholar 

  • Pruns, J. K., Rapp, C., Hintze, U., Wittern, K.-P., and König, W. A. 2003. Characterization of paraffin oils and petrolatum using LDI-TOF MS and principal component analysis. Eur. J. Lipid Sci. Technol. 105:275–280.

    Article  CAS  Google Scholar 

  • Ross, K. G., Vander Meer, R. K., Fletcher, D. J. C., and Vargo, E. J. 1987. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution 41:280–293.

    Article  Google Scholar 

  • Suiter, D. R., Carlson, D. A., Patterson, R. S., and Koehler, P. G. 1996. Host-location kairomone from Periplaneta americana (L.) for parasitoid Aprostocetus hagenowii (Ratzeburg). J. Chem. Ecol. 22:637–651.

    Article  CAS  Google Scholar 

  • Takahashi, S., and Gassa, A. 1995. Roles of cuticular hydrocarbons in intra- and interspecific recognition behavior of two Rhinotermitidae species. J. Chem. Ecol. 21:1837–1845.

    Article  CAS  Google Scholar 

  • Takematsu, Y., and Yamaoka, R. 1997. Taxonomy of Glyptotermes (Isoptera, Kalotermitidae) in Japan with reference to cuticular hydrocarbon analysis as chemotaxonomic characters. Esakia 37:1–14.

    Google Scholar 

  • Vauchot, B., Provost, E., Bagneres, A. G., Riviere, G., Roux, M., and Clement, J. L. 1998. Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony. J. Insect Physiol. 44:59–66.

    Article  CAS  Google Scholar 

  • Watson, J. A. L., Brown, W. V., Miller, L. R., Carter, F. L., and Lacey, M. J. 1989. Taxonomy of Heterotermes (Isoptera: Rhinotermitidae) in south-eastern Australia: Cuticular hydrocarbons of workers, and soldier and alate morphology. Syst. Entomol. 14:299–325.

    Article  Google Scholar 

  • Wigglesworth, V. B. 1965. The Principles of Insect Physiology. Methuen, London.

    Google Scholar 

  • Yalcin, T., Schriemer, D. C., and Li, L. 1997. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the analysis of polydienes. J. Am. Soc. Mass Spectrom. 8:1220–1229.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support provided by the Max Planck Institute, Jena, and the Institute of Organic Chemistry and Biochemistry, Prague (project Z4 0550506). The authors are indebted to Sybille Koch for technical assistance, to Dr. Karel Stránský for hydrocarbon standards and discussions, to Prof. Ivan Hrdý, Christian Kast, and Dr. Václav Stejskal for insect samples, and to Dr. Soňa Vašíčková and Dr. David Šaman for IR and NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Cvačka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvačka, J., Jiroš, P., Šobotník, J. et al. Analysis of Insect Cuticular Hydrocarbons Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J Chem Ecol 32, 409–434 (2006). https://doi.org/10.1007/s10886-005-9008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-9008-5

Key Words

Navigation