Skip to main content
Log in

A guided tour of large genome size in animals: what we know and where we are heading

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The study of genome size diversity is an ever-expanding field that is highly relevant in today’s world of rapid and efficient DNA sequencing. Animal genome sizes range from 0.02 to 132.83 pg but the majority of animal genomes are small, with the most of these genome sizes being less than 5 pg. Animals with large genomes (>10 pg) are scattered within some invertebrates, including the Platyhelminthes, crustaceans, and orthopterans, and also the vertebrates including the Actinopterygii, Chondrichthyes, and some amphibians. In this paper, we explore the connections between organismal phenotype, physiology, and ecology to genome size. We also discuss some of the molecular mechanisms of genome shrinkage and expansion obtained through comparative studies of species with full genome sequences and how this may apply to species with large genomes. As most animal species sequenced to date have been in the small range for genome size (especially invertebrates) due to sequencing costs and to difficulties associated with large genome assemblies, an understanding of the structural composition of large genomes is still lacking. Studies using next-generation sequencing are being attempted for the first time in animals with larger genomes. Such analyses using low genome coverage are providing a glimpse of the composition of repetitive elements in animals with more complex genomes. These future studies will allow a better understanding of factors leading to genomic obesity in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TE:

Transposable elements

NGS:

Next generation sequencing

LTR:

Long terminal repeat retrotransposon

SINE:

Short interspersed repetitive elements

LINE:

Long interspersed repetitive elements

BES:

BAC end sequences

pg:

Picogram

References

  • Arkhipova I, Meselson M (2000) Tranposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci 97:14473–14477

    Article  CAS  PubMed  Google Scholar 

  • Bachmann K, Rheinsmith EL (1973) Nuclear DNA amounts in pacific Crustacea. Chromosoma 43:225–236

    Article  CAS  PubMed  Google Scholar 

  • Beaton MJ, Hebert PDN (1989) Miniature genomes and endopolyploidy in cladoceran crustaceans. Genome 32:1048–1053

    Article  Google Scholar 

  • Beçak W, Beçak ML, Schreiber G, Lavalle D, Amorim FO (1970) Interspecific variability of DNA content in Amphibia. Experientia 26:204–206

    Article  PubMed  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceaous plants. Proc Roy Soc Lond B 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Env Exp Biol 16:93–108

    Article  CAS  Google Scholar 

  • Bennett MD (1977) The time and duration of meiosis. Phil Trans R Soc Lond B 277:201–277

    Article  CAS  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phyt 106:177–200

    Article  Google Scholar 

  • Bennett MD, Smith JB, Lewis Smith RI (1982) DNA amounts of angiosperms from the Antarctic and South Georgia. Env Exp Biol 22:307–318

    Article  Google Scholar 

  • Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790

    Article  PubMed  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2005) TE, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Blumenstiel JP (2011) Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet 27:23–31

    Article  CAS  PubMed  Google Scholar 

  • Bonnivard E, Catrice O, Ravaux J (2009) Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome 52:524–536

    Article  CAS  PubMed  Google Scholar 

  • Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177:1277–1290

    Article  CAS  PubMed  Google Scholar 

  • Bray N, Dubchak I, Pachter L (2003) AVID: a global alignment program. Gen Res 13:97–102

    Article  CAS  Google Scholar 

  • Brown DD, Dawid IB (1968) Specific gene amplification in oocytes. Science 160:272–280

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1985) Cell volume and the evolution of eukaryotic genome size. In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, Chichester, pp 104–184

    Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Ann Rev Genet 23:251–287

    Article  CAS  PubMed  Google Scholar 

  • Chen MS, SanMiguel P, Bennetzen JL (1998) Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148:435–443

    CAS  PubMed  Google Scholar 

  • Dalloul RA, Long JA, Zimin AV (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8(9):e1000475. doi:10.1371/journal.pbio.1000475

    Article  CAS  Google Scholar 

  • Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A et al (2010) Sequencing the genome of the Atlantic salmon Salmo salar. Genome Biol 11:403

    PubMed  Google Scholar 

  • de Boer JG, Yazawa R, Davidson WS, Koop BF (2007) Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics 8:422

    Article  PubMed  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314

    Article  PubMed  CAS  Google Scholar 

  • Denver DR, Morris K, Lynch M, Thomas WK (2004) High direct estimates of the mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682

    Article  CAS  PubMed  Google Scholar 

  • Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD (1997) A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genet Res 7:551–563

    CAS  Google Scholar 

  • Dufresne F, Hebert PDN (1998) Temperature-related differences in life-history characteristics between diploid and polyploid clones of the Daphnia pulex complex. Ecoscience 5:433–437

    Google Scholar 

  • Duvernell DD, Pryor SR, Adams SM (2004) Teleost fish genomes contain a diverse array of L1 retrotransposon lineages that exhibit a low copy number and high rate of turnover. J Mol Evol 59:298–308

    Article  CAS  PubMed  Google Scholar 

  • Escribano R, McLaren IA, Klein Breteler WCM (1992) Innate and acquired variation of nuclear DNA contents of marine copepods. Genome 35:602–610

    Article  CAS  Google Scholar 

  • Finston TL, Herbert PD, Foottit RB (1995) Genome size variation in aphids. Insect Biochem Mol Biol 25:189–196

    Article  CAS  Google Scholar 

  • Furano AV, Duvernell DD, Boissinot S (2004) L1 (line-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14

    Article  CAS  PubMed  Google Scholar 

  • Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD et al (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17:992–1004

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N, Labuda D (2000) Evolutionary inventions and continuity of CORE-SINEs in mammals. J Mol Biol 298:365–377

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SMD, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R et al (2006) A Sanger pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci 103:11240–11245

    Article  CAS  PubMed  Google Scholar 

  • Gosalvez J, López-Fernandez C, Esponda P (1980) Variability of the DNA content in five orthopteran species. Caryologia 33:275–281

    CAS  Google Scholar 

  • Grandbastien M, Audeon C, Bonnivard E (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cyt Genome Res 110:229–241

    Article  CAS  Google Scholar 

  • Graur D, Shuali Y, Li W-H (1989) Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol 28:279–285

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2000) Nucleotypic effects without nuclei: Genome size and erythrocyte size in mammals. Genome 43:895–901

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2002a) A bird’s eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56:121–130

    CAS  PubMed  Google Scholar 

  • Gregory TR (2002b) Genome size and developmental complexity. Genetica 115:131–146

    Article  PubMed  Google Scholar 

  • Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34.

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2005a) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–146

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2005b) The evolution of genome size in animals. In: TR Gregory (ed) The evolution of the genome. pp. 4–71

  • Gregory TR (2005c) Synergy between sequence and size in Large-scale genomics. Nature Rev Genetics 6:699–708

    Article  CAS  Google Scholar 

  • Gregory TR (2011). Animal Genome Size Database. http://www.genomesize.com

  • Gregory TR, Hebert PDN (2002) Genome size estimates for some oligochaete annelids. Can J Zool 80:1485–1489

    Article  CAS  Google Scholar 

  • Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101:228–238

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR, Hebert PDN, Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84:201–208

    Article  PubMed  Google Scholar 

  • Gregory TR, Nedved O, Adamowicz SJ (2003) C-value estimates for 31 species of ladybird beetles (Coleoptera: Coccinellidae). Hereditas 139:121–127

    Article  Google Scholar 

  • Grime JP (1983) Prediction of weed and crop response to climate based upon measurements of nuclear DNA content. Aspect Appl Biol 4:87–98

    Google Scholar 

  • Hardie DC, Hebert PDN (2003) The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46:683–706

    Article  CAS  PubMed  Google Scholar 

  • Hardie DC, Hebert PDN (2004) Genome size evolution in fishes. Can J Fish Aquat Sci 61:1636–1646

    Article  Google Scholar 

  • Hebert PDN, Beaton MJ (1990) Breeding system and genome size of the rhabdocoel turbellarian Mesostoma ehrenbergii. Genome 33:719–724

    Article  Google Scholar 

  • Hinegardner R (1974) Cellular DNA content of the Mollusca. Comp Biochem Physiol 47A:447–460

    Article  Google Scholar 

  • Hoegg S, Meyer A (2005) Hox clusters as models for vertebrate genome evolution. Trends Genet 21:421–424

    Article  CAS  PubMed  Google Scholar 

  • Horner HA, Macgregor HC (1983) C value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 63:135–146

    CAS  PubMed  Google Scholar 

  • Hughes AL, Friedman R (2008) Genome size reduction in the chicken has involved massive loss of ancestral protein-coding genes. Mol Biol Evol 25:2681–2688

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377:391

    Article  CAS  PubMed  Google Scholar 

  • Hughes A, Piontkivska H (2005) DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol Biol 5:12

    Article  PubMed  CAS  Google Scholar 

  • Johnston JS, Ross LD, Hughes DP, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13:581–585

    Article  CAS  PubMed  Google Scholar 

  • Juan C, Petitpierre E (1991) Evolution of genome size in darkling beetles (Tenebrionidae, Coleoptera). Genome 34:169–173

    Article  Google Scholar 

  • Kidwell MG (2002) TE and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  CAS  PubMed  Google Scholar 

  • Knight C, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology, and phenotype. Ann Bot 95:177–190

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc Lond 82:651–663

    Article  Google Scholar 

  • Lesage P, Todeschini AL (2005) Happy together: the life and times of Ty retrotransposons and their hosts. Cyt Genome Res 110:70–90

    Article  CAS  Google Scholar 

  • Li R, Fan W, Tian G, Zhu H, He L, Cai J et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317

    Article  CAS  PubMed  Google Scholar 

  • Licht LA, Lowcock LE (1991) Genome size and metabolic-rate in salamanders. Comp Biochem Physiol 100:83–92

    Article  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland

    Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNA as guardians of the genome. Cell 136:656–668

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • McLaren IA, Sevigny JM, Corkett CJ (1988) Body sizes, development rates, and genome sizes among Calanus species. Hydrobiologia 167–168:275–284

    Article  Google Scholar 

  • McLysaght A, Enright AJ, Skrabanek L, Wolfe KH (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17:22–36

    Article  CAS  PubMed  Google Scholar 

  • Mirsky AE, Ris H (1951) The deoxyribonucleic acid content of animal cells and its evolutionary significance. J Gen Physiol 34:451–462

    Article  CAS  PubMed  Google Scholar 

  • Moriyama EN, Petrov DA, Hartl DL (1998) Genome size and intron size in Drosophila. Mol Biol Evol 15:770–773

    CAS  PubMed  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–615

    Article  CAS  PubMed  Google Scholar 

  • Neafsey DE, Palumbi SR (2003) Genome size evolution in pufferfish: a comparative analysis of diodontid and tetraodontid pufferfish genomes. Genome Res 13:821–830

    Article  CAS  PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  CAS  PubMed  Google Scholar 

  • Novick PA, Basta H, Floumanhaft M (2009) The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. Mol Biol Evol 26:1811–1822

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Fujbuchi W, Kanehisa M (1996) The size differences among mammalian introns are due to the accumulation of small deletions. Febs Letters 390:99–103

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17:594–601

    Article  CAS  PubMed  Google Scholar 

  • Olmo E (1973) Quantitative variations in nuclear DNA and phylogenesis of Amphibia. Karyologia 26:43–68

    CAS  Google Scholar 

  • Olmo E (1974) Further data on the genome size in the urodeles. B Zool 41:29–33

    Article  Google Scholar 

  • Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256

    CAS  PubMed  Google Scholar 

  • Olmo E, Morescalchi A (1975) Evolution of the genome and cell sizes in salamanders. Experientia 31:804–806

    Article  CAS  PubMed  Google Scholar 

  • Olmo E, Odierna E (1982) Relationships between DNA content and cell morphometric parameters in reptiles. Basic Appl Histochem 26:27–34

    CAS  PubMed  Google Scholar 

  • Ophir R, Graur D (1997) Patterns and rates of indel evolution in processed pseudogenes from humans and murids. Gene 205:191–202

    Article  CAS  PubMed  Google Scholar 

  • Orel N, Puchta H (2003) Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol 51:523–531

    Article  CAS  PubMed  Google Scholar 

  • Organ CL, Canoville A, Reisz RR (2011) Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 24:372–380

    Article  CAS  PubMed  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploidy: incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Pedersen RA (1971) DNA content, ribosomal gene multiplicity, and cell size in fish. J Exp Zool 177:65–79

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302

    CAS  PubMed  Google Scholar 

  • Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2001) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062

    Article  Google Scholar 

  • Rasch EM, Rasch RW (1981) Cytophotometric determination of genome size for two species of cave crickets (Orthoptera, Rhaphidophoridae). J Histochem Cytochem 29:885

    Google Scholar 

  • Rasmussen DA, Noor MAF (2009) What can you do with 0.1× genome coverage? A case study based on a genome survey of the scuttle fly Megaselia scalaris (Phoridae). BMC Genomics 10:382. doi:10.1186/1471-2164-10-382

    Article  PubMed  CAS  Google Scholar 

  • Rees DJ, Dufresne F, Glémet H (2007) Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Genome 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Rees DJ, Belzile C, Glémet H, Dufresne F (2008) Large genomes among caridean shrimp. Genome 51:159–163

    Article  CAS  PubMed  Google Scholar 

  • Rheinsmith EL, Hinegardner R, Bachmann K (1974) Nuclear DNA amounts in Crustacea. Comp Biochem Physiol 48B:343–348

    Google Scholar 

  • Sela N, Kim E, Ast G (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 11:R59

    Article  PubMed  Google Scholar 

  • Sexsmith LE (1968) DNA values and karyotypes of amphibians. Ph.D. thesis, Department of Botany, University of Toronto

  • Shirasu K, Shulman AH, Lahaye T (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  CAS  PubMed  Google Scholar 

  • Smith CD, Ziminb A, Holtc A, Abouheif E, Benton R, Cash E et al (2011) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci 108:5673–5678

    Article  CAS  PubMed  Google Scholar 

  • Stingo V, Capriglione T, Rocco L, Improta R, Morescalchi A (1989) Genome size and A-T rich DNA in selachians. Genetica 79:197–205

    Article  Google Scholar 

  • Szarski H (1970) Changes in the amount of DNA in cell nuclei during vertebrate evolution. Nature 226:651–652

    Article  CAS  PubMed  Google Scholar 

  • Szarski H (1983) Cell size and the concept of wasteful and frugal evolutionary strategies. J Theor Biol 105:201–209

    Article  CAS  PubMed  Google Scholar 

  • Thomson KS, Muraszko K (1978) Estimation of cell size and DNA content in fossil fishes and amphibians. J Exp Zool 205:315–320

    Article  CAS  Google Scholar 

  • Tiersch TR, Wachtel SS (1991) On the evolution of genome size of birds. J Hered 82:363–368

    CAS  PubMed  Google Scholar 

  • Vergilino R, Belzile C, Dufresne F (2009) Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae). Biol J Linn Soc 97:68–79

    Article  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (1995) Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rates of mammals is related to genome size. Evolution 49:1249–1259

    Article  Google Scholar 

  • Vinogradov AE (1997) Nucleotypic effect in homeotherms: Body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution 51:220–225

    Article  Google Scholar 

  • Vinogradov AE (1999) Intron–genome size relationship on a large evolutionary scale. J Mol Evol 49:376–384

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2000) Larger genomes for molluskan land pioneers. Genome 43:211–212

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2004) Testing genome complexity. Science 304:389–390

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2005) Genome size and chromatin condensation in vertebrates. Chromosoma 113:362–369

    Article  PubMed  Google Scholar 

  • Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Cronn RC, Alvarez I (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352

    CAS  PubMed  Google Scholar 

  • Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci 103:17600–17601

    Article  CAS  PubMed  Google Scholar 

  • Westerman M, Barton NH, Hewitt GM (1987) Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity 58:221–228

    Article  Google Scholar 

  • White MM, McLaren IA (2000) Copepod development rates in relation to genome size and 18S rDNA copy number. Genome 43:750–755

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Li J, Li Y, Cui R, Wang J, Wang J et al (2011) Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics 12:188. doi:10.1186/1471-2164-12-188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. Gregory for organizing an insightful workshop on genome size research held in Guelph, Ontario in 2010 and Dr. J. Bainard and two anonymous reviewers for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to France Dufresne.

Additional information

Responsible Editor: Ryan Gregory and Jillian Bainard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufresne, F., Jeffery, N. A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res 19, 925–938 (2011). https://doi.org/10.1007/s10577-011-9248-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9248-x

Keywords

Navigation