Skip to main content

Advertisement

Log in

Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bacterial meningitis is a life-threatening infection associated with cognitive impairment in many survivors. The pathogen invades the central nervous system (CNS) by penetrating through the luminal side of the cerebral endothelium, which is an integral part of the blood-brain barrier. The replication of bacteria within the subarachnoid space occurs concomitantly with the release of their compounds that are highly immunogenic. These compounds known as pathogen-associated molecular patterns (PAMPs) may lead to both an increase in the inflammatory response in the host and also microglial activation. Microglia are the resident macrophages of the CNS which, when activated, can trigger a host of immunological pathways. Classical activation increases the production of pro-inflammatory cytokines, chemokines, and reactive oxygen species, while alternative activation is implicated in the inhibition of inflammation and restoration of homeostasis. The inflammatory response from classical microglial activation can facilitate the elimination of invasive microorganisms; however, excessive or extended microglial activation can result in neuronal damage and eventually cell death. This review aims to discuss the role of microglia in the pathophysiology of bacterial meningitis as well as the process of microglial activation by PAMPs and by endogenous constituents that are normally released from damaged cells known as danger-associated molecular patterns (DAMPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

17β‑HSD14:

17β‑hydroxysteroid dehydrogenase type 14

AIM2:

Absent in melanoma

AP-1:

Activator protein-1

Arg1:

Arginase 1

ASC:

Apoptosis-associated speck-like protein containing a caspase-recruitment domain

ATP:

Adenosine 5′-triphosphate

BBB:

Blood-brain-barrier

CLRs:

c-type lectin receptors

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CX3CL1:

Chemokine (C-X3-C motif) ligand 1

CX3CR1:

Chemokine (C-X3-C motif) receptor 1

DAMPs:

Damage-associated molecular patterns

DHEA:

Dehydroepiandrosterone

DNA:

Deoxyribonucleic acid

ERβ:

Estrogen receptor beta

FIZZ1:

Found in inflammatory zone 1

GSA-IB4:

Griffonia simplicifolia isolectin-B4

HMGB-1:

High mobility group box-1 protein

HSP:

Heat shock protein

Iba1:

Ionized calcium binding adaptor molecule 1

IFN:

Interferon

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

iNOs:

Nitric oxide synthase

IRAK-4:

Interleukin-1 receptor-associated kinase 4

IRF-3:

Interferon-regulatory factor 3

JAK-1:

Receptor-Janus Kinase-1

LPS:

Lipopolysaccharide

M1:

Classical activation phenotype

M2:

Alternative activation phenotype

MDA:

Malondialdehyde

MIP-2:

Macrophage inflammatory protein 2

MyD88:

Myeloid differentiation factor 88

NF-κB:

Nuclear transcription factor kappa factor B

NLRP3:

Nucleotide-binding domain and leucine-rich repeat protein 3

NLRs:

Nucleotide binding oligomerization domain-like receptors

NO:

Nitric oxide

NODs:

Nucleotide binding oligomerization domains

O2 :

Superoxide anion

ONOO :

Peroxynitrite formation

P2X:

P2 purinergic receptor

PAMPs:

Pathogen-associated molecular patterns

PRRs:

Pattern-recognition receptors

RAGE:

Receptor for advanced glycation end products

RLRs:

RIG-I-like receptors

STAT-3:

Activator of transcription-3

TGF-β:

Transforming growth factor beta

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factor

TRAF:

Receptor-associated factor

TRIF:

TIR-domain-containing adapter-inducing interferon-β

Ym1:

Chitinase-3-like protein 3

References

  1. Hoogman M, van de Beek D, Weisfelt M, de Gans J, Schmand B (2007) Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 78(10):1092–1096

    Article  PubMed  PubMed Central  Google Scholar 

  2. Merkelbach S, Sittinger H, Schweizer I, Muller M (2000) Cognitive outcome after bacterial meningitis. Acta Neurol Scand 102(2):118–123

    Article  CAS  PubMed  Google Scholar 

  3. Sellner J, Täuber MG, Leib SL (2010) Chapter 1—pathogenesis and pathophysiology of bacterial CNS infections. In: Karen LR, Allan RT (eds) Handbook of clinical neurology. Elsevier, New York, pp 1–16

  4. Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D (2011) Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 24(3):557–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Savva A, Roger T (2013) Targeting Toll-Like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 4:387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T (2014) Host innate immune responses to sepsis. Virulence 5(1):36–44

    Article  PubMed  Google Scholar 

  8. Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ, Wang H (2014) Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 10(6):713–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barichello T, Generoso JS, Milioli G, Elias SG, Teixeira AL (2013) Pathophysiology of bacterial infection of the central nervous system and its putative role in the pathogenesis of behavioral changes. Rev Bras Psiquiatr 35(1):81–87

    Article  PubMed  Google Scholar 

  10. Hu X, Liou AK, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y et al (2014) Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 119–120:60–84

    Article  PubMed  CAS  Google Scholar 

  11. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787

    Article  CAS  PubMed  Google Scholar 

  12. Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088

    Article  PubMed  Google Scholar 

  13. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266

    Article  CAS  PubMed  Google Scholar 

  14. Yamada J, Jinno S (2013) Novel objective classification of reactive microglia following hypoglossal axotomy using hierarchical cluster analysis. J Comp Neurol 521(5):1184–1201

    Article  CAS  PubMed  Google Scholar 

  15. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18

    Article  CAS  PubMed  Google Scholar 

  16. Suzumura A (2013) Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci 14(1):16–20

    Article  CAS  PubMed  Google Scholar 

  17. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 11(1):56–64

    Article  PubMed  Google Scholar 

  19. Hohne C, Wenzel M, Angele B, Hammerschmidt S, Hacker H, Klein M, Bierhaus A, Sperandio M et al (2013) High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain 136(Pt 6):1746–1759

    Article  PubMed  Google Scholar 

  20. Okuma Y, Date I, Nishibori M (2014) Anti-high mobility group Box-1 antibody therapy for traumatic brain injury. Yakugaku Zasshi 134(6):701–705

    Article  CAS  PubMed  Google Scholar 

  21. Zhu F, Zheng Y, Ding YQ, Liu Y, Zhang X, Wu R, Guo X, Zhao J (2014) Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS One 9(4):e93966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dworak M, Stebbing M, Kompa AR, Rana I, Krum H, Badoer E (2014) Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction. Auton Neurosci 185:43–50

    Article  CAS  PubMed  Google Scholar 

  23. Schmitz T, Krabbe G, Weikert G, Scheuer T, Matheus F, Wang Y, Mueller S, Kettenmann H et al (2014) Minocycline protects the immature white matter against hyperoxia. Exp Neurol 254:153–165

    Article  CAS  PubMed  Google Scholar 

  24. Seabrook TJ, Jiang L, Maier M, Lemere CA (2006) Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia 53(7):776–782

    Article  PubMed  Google Scholar 

  25. Sheu JN, Liao WC, Wu UI, Shyu LY, Mai FD, Chen LY, Chen MJ, Youn SC et al (2013) Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis. Comp Immunol Microbiol Infect Dis 36(2):137–148

    Article  PubMed  Google Scholar 

  26. Paolicelli RC, Bisht K, Tremblay ME (2014) Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci 8:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mattison HA, Nie H, Gao H, Zhou H, Hong JS, Zhang J (2013) Suppressed proinflammatory response of microglia in CX3CR1 knockout mice. J Neuroimmunol 257(1–2):110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, Perego C, Parotto E et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 11(3):679–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Norden DM, Fenn AM, Dugan A, Godbout JP (2014) TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62(6):881–895

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rasley A, Tranguch SL, Rati DM, Marriott I (2006) Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure to Borrelia burgdorferi or Neisseria meningitidis. Glia 53(6):583–592

    Article  PubMed  Google Scholar 

  31. Jin S, Sonobe Y, Kawanokuchi J, Horiuchi H, Cheng Y, Wang Y, Mizuno T, Takeuchi H, Suzumura A (2014) Interleukin-34 restores blood-brain barrier integrity by upregulating tight junction proteins in endothelial cells. PLoS One 9(12):e115981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Redlich S, Ribes S, Schutze S, Nau R (2014) Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 by macrophages and increases the resistance of mice against infections. J Neuroinflammation 11:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gaikwad SM, Heneka MT (2013) Studying M1 and M2 states in adult microglia. Methods Mol Biol 1041:185–197

    Article  CAS  PubMed  Google Scholar 

  34. Koedel U (2009) Toll-like receptors in bacterial meningitis. Curr Top Microbiol Immunol 336:15–40

    CAS  PubMed  Google Scholar 

  35. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC (2009) IRAK-4 inhibitors for inflammation. Curr Top Med Chem 9(8):724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takeda K, Akira S (2007) Toll-like receptors. Curr Protoc Immunol Chapter 14: p Unit 14.12

  37. Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ (2004) MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 127(Pt 6):1437–1445

    Article  PubMed  Google Scholar 

  38. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312

    Article  CAS  PubMed  Google Scholar 

  39. Tato CM, Hunter CA (2002) Host-pathogen interactions: subversion and utilization of the NF-kappa B pathway during infection. Infect Immun 70(7):3311–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kastenbauer S, Koedel U, Weih F, Ziegler-Heitbrock L, Pfister HW (2004) Protective role of NF-kappaB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol 498(1–3):315–318

    Article  CAS  PubMed  Google Scholar 

  41. Koedel U, Bayerlein I, Paul R, Sporer B, Pfister HW (2000) Pharmacologic interference with NF-kappaB activation attenuates central nervous system complications in experimental Pneumococcal meningitis. J Infect Dis 182(5):1437–1445

    Article  CAS  PubMed  Google Scholar 

  42. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Damgaard RB, Gyrd-Hansen M (2011) Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity. Discov Med 11(58):221–231

    PubMed  Google Scholar 

  44. Kumar S, Ingle H, Prasad DV, Kumar H (2013) Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 39(3):229–246

    Article  CAS  PubMed  Google Scholar 

  45. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu X, Chauhan VS, Young AB, Marriott I (2010) NOD2 mediates inflammatory responses of primary murine glia to Streptococcus pneumoniae. Glia 58(7):839–847

    PubMed  PubMed Central  Google Scholar 

  47. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, Reppe K, Meixenberger K et al (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187(1):434–440

    Article  CAS  PubMed  Google Scholar 

  48. Gombault A, Baron L, Couillin I (2012) ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol 3:414

    PubMed  Google Scholar 

  49. Quagliarello VJ, Wispelwey B, Long WJ Jr, Scheld WM (1991) Recombinant human interleukin-1 induces meningitis and blood–brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J Clin Invest 87(4):1360–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zwijnenburg PJ, van der Poll T, Florquin S, Roord JJ, Van Furth AM (2003) IL-1 receptor type 1 gene-deficient mice demonstrate an impaired host defense against pneumococcal meningitis. J Immunol 170(9):4724–4730

    Article  CAS  PubMed  Google Scholar 

  51. Zwijnenburg PJ, van der Poll T, Florquin S, Akira S, Takeda K, Roord JJ, van Furth AM (2003) Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis. J Neuroimmunol 138(1–2):31–37

    Article  CAS  PubMed  Google Scholar 

  52. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A et al (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451

    Article  CAS  PubMed  Google Scholar 

  53. Samways DS, Li Z, Egan TM (2014) Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 8:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8(4):195–202

    Article  CAS  PubMed  Google Scholar 

  55. Tobon-Velasco JC, Cuevas E, Torres-Ramos MA, Santamaria A (2014) Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets 13(9):1615–1626

    Article  CAS  PubMed  Google Scholar 

  56. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zelante T, Ricciardi-Castagnoli P (2012) The yin-yang nature of CSF1R-binding cytokines. Nat Immunol 13(8):717–719

    Article  CAS  PubMed  Google Scholar 

  58. Nakamichi Y, Udagawa N, Takahashi N (2013) IL-34 and CSF-1: similarities and differences. J Bone Miner Metab 31(5):486–495

    Article  CAS  PubMed  Google Scholar 

  59. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11(1):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Appel SH, Beers DR, Henkel JS (2010) T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 31(1):7–17

    Article  CAS  PubMed  Google Scholar 

  61. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60(4):251–266

    Article  CAS  Google Scholar 

  62. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  CAS  PubMed  Google Scholar 

  63. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    Article  CAS  PubMed  Google Scholar 

  64. Suzumura A, Sawada M, Yamamoto H, Marunouchi T (1993) Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151(4):2150–2158

    CAS  PubMed  Google Scholar 

  65. Zhou X, Spittau B, Krieglstein K (2012) TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation 9:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12(11):1113–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pourcet B, Pineda-Torra I (2013) Transcriptional regulation of macrophage arginase 1 expression and its role in atherosclerosis. Trends Cardiovasc Med 23(5):143–152

    Article  CAS  PubMed  Google Scholar 

  68. Striz I, Brabcova E, Kolesar L, Sekerkova A (2014) Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci (Lond) 126(9):593–612

    Article  CAS  Google Scholar 

  69. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW (2001) Interleukin-10 in the brain. Crit Rev Immunol 21(5):427–449

    Article  CAS  PubMed  Google Scholar 

  71. Genovese T, Esposito E, Mazzon E, Di Paola R, Caminiti R, Bramanti P, Cappelani A, Cuzzocrea S (2009) Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice. J Neurochem 108(6):1360–1372

    Article  CAS  PubMed  Google Scholar 

  72. Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A (2013) The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 30(15):1311–1324

    Article  PubMed  Google Scholar 

  73. Grandgirard D, Leib SL (2010) Meningitis in neonates: bench to bedside. Clin Perinatol 37(3):655–676

    Article  PubMed  Google Scholar 

  74. van de Beek D, Drake JM, Tunkel AR (2010) Nosocomial bacterial meningitis. N Engl J Med 362(2):146–154

    Article  PubMed  Google Scholar 

  75. Coutinho LG, Grandgirard D, Leib SL, Agnez-Lima LF (2013) Cerebrospinal-fluid cytokine and chemokine profile in patients with pneumococcal and meningococcal meningitis. BMC Infect Dis 13(1):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharief MK, Ciardi M, Thompson EJ (1992) Blood-brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-alpha but not interleukin-1 beta. J Infect Dis 166(2):350–358

    Article  CAS  PubMed  Google Scholar 

  77. Barichello T, dos Santos I, Savi GD, Simoes LR, Silvestre T, Comim CM, Sachs D, Teixeira MM et al (2010) TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol 221(1–2):42–45

    Article  CAS  PubMed  Google Scholar 

  78. Barichello T, Lemos JC, Generoso JS, Cipriano AL, Milioli GL, Marcelino DM, Vuolo F, Petronilho F et al (2011) Oxidative stress, cytokine/chemokine and disruption of blood–brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res 36(10):1922–1930

    Article  CAS  PubMed  Google Scholar 

  79. Tsao N, Chang WW, Liu CC, Lei HY (2002) Development of hematogenous pneumococcal meningitis in adult mice: the role of TNF-alpha. FEMS Immunol Med Microbiol 32(2):133–140

    CAS  PubMed  Google Scholar 

  80. Gerber J, Bottcher T, Hahn M, Siemer A, Bunkowski S, Nau R (2004) Increased mortality and spatial memory deficits in TNF-alpha-deficient mice in ceftriaxonetreated experimental pneumococcal meningitis. Neurobiol Dis 16(1):133–138

    Article  CAS  PubMed  Google Scholar 

  81. Klein M, Koedel U, Pfister HW (2006) Oxidative stress in pneumococcal meningitis: a future target for adjunctive therapy? Prog Neurobiol 80(6):269–280

    Article  CAS  PubMed  Google Scholar 

  82. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288(37):26464–26472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101(12):4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matata BM, Galinanes M (2002) Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem 277(3):2330–2335

    Article  CAS  PubMed  Google Scholar 

  85. Srivastava R, Lohokare R, Prasad R (2013) Oxidative stress in children with bacterial meningitis. J Trop Pediatr 59(4):305–308

    Article  PubMed  Google Scholar 

  86. Barichello T, Generoso JS, Simoes LR, Elias SG, Quevedo J (2013) Role of oxidative stress in the pathophysiology of pneumococcal meningitis. Oxidative Med Cell Longev 2013:371465

    Article  CAS  Google Scholar 

  87. Barichello T, Savi GD, Silva GZ, Generoso JS, Bellettini G, Vuolo F, Petronilho F, Feier G et al (2010) Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 478(2):93–96

    Article  CAS  PubMed  Google Scholar 

  88. Barichello T, Savi GD, Simoes LR, Generoso JS, Fraga DB, Bellettini G, Daufenbach JF, Rezin GT et al (2010) Evaluation of mitochondrial respiratory chain in the brain of rats after pneumococcal meningitis. Brain Res Bull 82(5–6):302–307

    Article  CAS  PubMed  Google Scholar 

  89. Kastenbauer S, Koedel U, Becker BF, Pfister HW (2002) Pneumococcal meningitis in the rat: evaluation of peroxynitrite scavengers for adjunctive therapy. Eur J Pharmacol 449(1–2):177–181

    Article  CAS  PubMed  Google Scholar 

  90. Barichello T, Santos AL, Savi GD, Generoso JS, Otaran P, Michelon CM, Steckert AV, Mina F et al (2012) Antioxidant treatment prevents cognitive impairment and oxidative damage in pneumococcal meningitis survivor rats. Metab Brain Dis 27(4):587–593

    Article  CAS  PubMed  Google Scholar 

  91. Tang D, Kang R, Cao L, Zhang G, Yu Y, Xiao W, Wang H, Xiao X (2008) A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med 36(1):291–295

    Article  CAS  PubMed  Google Scholar 

  92. Kang R, Cao LZ, Tang DL, Zhang GY, Yu Y, Xiao XZ (2007) Significance of heat shock protein 70 in cerebrospinal fluid in differential diagnosis of central nervous system infection in children. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 19(6):346–348

    CAS  PubMed  Google Scholar 

  93. Tukaj S (2014) Immunoregulatory properties of Hsp70. Postepy Hig Med Dosw (Online) 68:722–727

    Article  Google Scholar 

  94. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83

    Article  CAS  PubMed  Google Scholar 

  95. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gazzolo D, Grutzfeld D, Michetti F, Toesca A, Lituania M, Bruschettini M, Dobrzanska A, Bruschettini P (2004) Increased S100B in cerebrospinal fluid of infants with bacterial meningitis: relationship to brain damage and routine cerebrospinal fluid findings. Clin Chem 50(5):941–944

    Article  CAS  PubMed  Google Scholar 

  97. Kepa L, Oczko-Grzesik B (2013) Evaluation of cerebrospinal fluid S100B protein concentration in patients with purulent, bacterial meningitis—own observations. Przegl Epidemiol 67(3):415–419, 525-8

    PubMed  Google Scholar 

  98. Zhang LY, Li Y, Jin MF (2014) Diagnostic values of neopterin and S100b for central nervous system infections in children. Zhongguo Dang Dai Er Ke Za Zhi 16(4):380–383

    CAS  PubMed  Google Scholar 

  99. Schmidt H, Gerber J, Stuertz K, Djukic M, Bunkowski S, Fischer FR, Otto M, Nau R (2010) S100B in the cerebrospinal fluid–a marker for glial damage in the rabbit model of pneumococcal meningitis. Neurosci Lett 475(2):104–107

    Article  CAS  PubMed  Google Scholar 

  100. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, Edwards M, Rosmalen CF et al (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75(20):1786–1793

    Article  CAS  PubMed  Google Scholar 

  101. Shin SH, Kim KS (2012) Treatment of bacterial meningitis: an update. Expert Opin Pharmacother 13(15):2189–2206

    Article  CAS  PubMed  Google Scholar 

  102. Li C, Yuan K, Schluesener H (2013) Impact of minocycline on neurodegenerative diseases in rodents: a meta-analysis. Rev Neurosci 24(5):553–562

    Article  PubMed  CAS  Google Scholar 

  103. Keller WR, Kum LM, Wehring HJ, Koola MM, Buchanan RW, Kelly DL (2013) A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol 27(4):337–342

    Article  CAS  PubMed  Google Scholar 

  104. Zhang F, Liu J, Shi JS (2010) Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol 636(1–3):1–7

    Article  CAS  PubMed  Google Scholar 

  105. Kastenbauer S, Koedel U, Wick M, Kieseier BC, Hartung HP, Pfister HW (2003) CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J Neuroimmunol 137(1–2):210–217

    Article  CAS  PubMed  Google Scholar 

  106. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    Article  CAS  PubMed  Google Scholar 

  107. Tena A, Sachs DH (2014) Stem cells: immunology and immunomodulation. Dev Ophthalmol 53:122–132

    Article  PubMed  Google Scholar 

  108. van Velthoven CT, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HL, Maas M, Heijnen CJ et al (2013) Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44(5):1426–1432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wang Y, Colonna M (2014) Interkeukin-34, a cytokine crucial for the differentiation and maintenance of tissue resident macrophages and Langerhans cells. Eur J Immunol 44(6):1575–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G et al (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811

    Article  CAS  PubMed  Google Scholar 

  111. Muccioli GG, Stella N (2008) Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54(1):16–22

    Article  CAS  PubMed  Google Scholar 

  112. Redlich S, Ribes S, Schutze S, Czesnik D, Nau R (2012) Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 and Streptococcus pneumoniae R6 by microglial cells. J Neuroimmunol 244(1–2):32–34

    Article  CAS  PubMed  Google Scholar 

  113. Nau R, Ribes S, Djukic M, Eiffert H (2014) Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Front Cell Neurosci 8:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research from the Center for Experimental Models in Psychiatry (USA) is supported by grants from the Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston. Research from Laboratorio de Microbiologia Experimental and Laboratório de Neurociências (Brazil) is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), and Universidade do Extremo Sul Catarinense (UNESC).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Barichello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barichello, T., Generoso, J.S., Simões, L.R. et al. Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Mol Neurobiol 53, 1770–1781 (2016). https://doi.org/10.1007/s12035-015-9107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9107-4

Keywords

Navigation