Skip to main content
Log in

Antioxidant treatment prevents cognitive impairment and oxidative damage in pneumococcal meningitis survivor rats

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Pneumococcal meningitis is associated with the highest fatality case ratios in the world. Most of patients that survive present neurologic sequelae at later times as well as biochemicals alterations such as oxidative stress in both earlier and later times after central nervous system infection. In this context, we evaluated the effect of antioxidant treatment on memory and oxidative parameters in the hippocampus of meningitis survivor rats 10 days after infection. To this aim, the animals underwent a magna cistern tap receiving either 10 μL sterile saline as a placebo or an equivalent volume of a Streptococcus pneumoniae suspension at the concentration 5x109 cfu/mL. The animals submitted to meningitis were divided into the following groups: 1) treated with antibiotic, 2) treated with basic support plus N-acetylcysteine, 3) treated with basic support plus deferoxamine, 4) treated with basic support plus N-acetylcysteine and deferoxamine, or 5) treated with N-acetylcysteine plus deferoxamine. Ten days after meningitis, the animals underwent inhibitory avoidance and habituation to an open field tasks and, immediately after, were assessed for oxidative damage in the hippocampus and cortex. The meningitis group showed significantly decreased performance in latency retention compared with the sham group in the inhibitory avoidance task. In the open-field task, the meningitis group presented memory impairment after meningitis. All these memory impairments were prevented by N-acetylcysteine plus deferoxamine with or without basic support and its isolate use. In addition, there was an increase of lipid phosphorylation in cortex and hippocampus and all the combined antioxidants attenuated lipid phosphorylation in both structures. On the other hand, there was an increase of protein phosphorylation in cortex and N-acetylcysteine plus deferoxamine with or without basic support prevented it. Thus, we hypothesize that oxidative stress may be related to cognitive impairment in pneumococcal meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Auer M, Pfister LA, Leppert D, Täuber MG, Leib SL (2000) Effects of clinically used antioxidants in experimental pneumococcal meningitis. J Infect Dis 182:347–350

    Article  PubMed  CAS  Google Scholar 

  • Baraff LJ, Lee SI, Schriger DL (1993) Outcomes of bacterial meningitis in children: a meta-analysis. Pediatr Infect Dis J 12:389–394

    Article  PubMed  CAS  Google Scholar 

  • Barichello T, Machado RA, Constantino L, Valvassori SS, Réus GZ, Martins MR et al (2007) Antioxidant treatment prevented late memory impairment in an animal model of sepsis. Crit Care Med 35:2186–2190

    Article  PubMed  CAS  Google Scholar 

  • Barichello T, dos Santos I, Savi GD, Florentino AF, Silvestre C, Comim CM et al (2009) Tumor necrosis factor alpha (TNF-alpha) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 467:217–219

    Article  PubMed  CAS  Google Scholar 

  • Barichello T, Silva GZ, Generoso JS, Savi GD, Michelon CM, Feier G et al (2010a) J Time-dependent behavioral recovery after pneumococcal meningitis in rats. Neural Transm 117:819–826

    Article  Google Scholar 

  • Barichello T, dos Santos I, Savi GD, Simões LR, Silvestre T, Comim CM et al (2010b) TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol 221:42–45

    Article  PubMed  CAS  Google Scholar 

  • Barichello T, Savi GD, Silva GZ, Generoso JS, Bellettini G, Vuolo F, Petronilho F, Feier G, Comim CM, Quevedo J, Dal-Pizzol F (2010c) Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumonia. Neurosci Lett 478:93–96

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Braun JS, Novak R, Herzog K-H, Bodner SM, Cleveland JL, Tuomanen EI (1999) Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med 5:298–302

    Article  PubMed  CAS  Google Scholar 

  • Christen S, Bifrare Y, Siegenthaler C, Leib SL, Tauber MG (2001a) Marked elevation in cortical urate and xanthine oxidoreductase activity in experimental bacterial meningitis. Brain Res 900:244–251

    Article  PubMed  CAS  Google Scholar 

  • Christen S, Schape RM, Lykkesfeldt J, Siegenthaler C, Bifrare YD, Banic S, Leib SL, Täuber MG (2001b) Oxidative stress in brain during experimental bacterial meningitis: differential effects of alpha-phenyl-tert-butyl nitrone and N-acetylcysteine treatment. Free Radic Biol Med 31:754–762

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  • Ghielmetti M, Ren H, Lei SL, Täuber MG, Christen S (2003) Impaired cortical energy metabolism but not major antioxidant defenses in experimental bacterial meningitis. Brain Res 976(2):139–148

    Google Scholar 

  • Giebink GS (2001) The prevention of pneumococcal disease in children. N Engl J Med 345:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Grandgirard D, Steiner O, Täuber MG, Leib SL (2007a) An infant mouse model of brain damage in pneumococcal meningitis. Acta Neuropathol 114:609–617

    Article  PubMed  Google Scholar 

  • Grandgirard D, Schürch C, Cottagnoud P, Leib SL (2007b) Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother 51:2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Hoogman M, Van de Beek D, Weisfelt M, Gans J, Schmand B (2000) Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 2007; 78:1092–1096.

    Google Scholar 

  • Irazuzta JE, Mirkin LD, Zingarelli B (2000) Mercaptoethylguanidine attenuates inflammation in bacterial meningitis in rabbits. Life Sci 67:365–372

    Article  PubMed  CAS  Google Scholar 

  • Irazuzta JE, Pretzlaff RK, Decourten-Myers G, Zemlan F, Zincarelli B (2005) Dexamethasone decreases neurological sequelae and caspase activity. Intensive Care Med 31:146–150

    Article  PubMed  Google Scholar 

  • Ikeda Y, Anderson JH, Long DM (1989) Oxygen free radicals in the genesis of traumatic and peritumoral brain edema. Neurosurgery 24:679–685

    Article  PubMed  CAS  Google Scholar 

  • Koedel U, Pfister HW (1997) Protective effect of the antioxidant N-acetyl-L-cysteine in pneumococcal meningitis in the rat. Neurosci Lett 225:33–36

    Article  PubMed  CAS  Google Scholar 

  • Leib SL, Kim YS, Chow LL, Sheldon RA, Tâuber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococc. J Clin Invest 98:2632–2639

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lorenzl S, Koedel U, Frei K, Bernatowicz A, Fontana A, Pfister HW (1995) Protective effect of a 21-aminosteroid during experimental pneumococcal meningitis. J Infect Dis 172:113–118

    Article  PubMed  CAS  Google Scholar 

  • Lowry H, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Menezes CC, Dorneles AG, Sperotto RL, Duarte MMF, Schetinger MRS, Loro VL (2009) Oxidative stress in cerebrospinal fluid of patients with aseptic and bacterial meningitis. Neurochem Res 34:1255–1260

    Article  PubMed  Google Scholar 

  • Mitchell TJ, Andrew PW (1997) Biological properties of pneumolysin. Microb Drug Resist 3:19–26

    Article  PubMed  CAS  Google Scholar 

  • Patt A, Horesh IR, Berger EM, Harken AH, Repine JE (1990) Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg 25:224–227

    Article  PubMed  CAS  Google Scholar 

  • Pfister HW, Koedel U, Lorenzl S, Tomasz A (1992) Antioxidants attenuate microvascular changes in the early phase of experimental pneumococcal meningitis in rats. Stroke 23:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Pomar V, Martínez S, Paredes R, Domingo P (2004) Advances in adjuvant therapy against acute bacterial meningitis. Curr Drug Targets Infect Disord 4:303–309

    Article  PubMed  CAS  Google Scholar 

  • Quevedo J, Vianna MR, Roesler R, Izquierdo I (1999) Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn Mem 6:600–607

    Article  PubMed  CAS  Google Scholar 

  • Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JCF, Dal-Pizzol F (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal LA, Amineva SP, Szakaly RJ, Lemanske RF Jr, Gern JE, Sorkness RL (2009) A rat model of picornavirus-induced airway infection and inflammation. Virol J 11:122

    Article  Google Scholar 

  • Sellner J, Täuber MG, Leib SL (2010) Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 96:1–16

    Article  PubMed  Google Scholar 

  • Schrag SJ, Hadler JL, Arnold KE, Martell-Cleary P, Reingold A, Schuchat A (2006) Risk factors for invasive, early-onset Escherichia coli infections in the era of widespread intrapartum antibiotic use. Pediatrics 118:570–576

    Article  PubMed  Google Scholar 

  • Tepel M, Van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343:180–184

    Article  PubMed  CAS  Google Scholar 

  • Wald ER, Kaplan SL, Mason EO Jr, Sabo D, Ross L, Arditiet M (1995) Dexamethasone therapy for children with bacterial meningitis. Meningitis Study Group. Pediatrics 95:21–28

    PubMed  CAS  Google Scholar 

  • Vianna MR, Alonso M, Viola H, Izquierdo I (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7:333–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq (TB, JQ and FD-P), FAPESC (TB, JQ and FD-P), and UNESC (TB, JQ and FD-P). JQ and FD-P are CNPq Research Fellows. AVS and CMC is holder of a CNPq Studentship.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Barichello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barichello, T., Santos, A.L.B., Savi, G.D. et al. Antioxidant treatment prevents cognitive impairment and oxidative damage in pneumococcal meningitis survivor rats. Metab Brain Dis 27, 587–593 (2012). https://doi.org/10.1007/s11011-012-9315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9315-9

Keywords

Navigation