Skip to main content

Advertisement

Log in

Oxidative Stress, Cytokine/Chemokine and Disruption of Blood–Brain Barrier in Neonate Rats After Meningitis by Streptococcus agalactiae

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We verify the levels of cytokine/chemokine, myeloperoxidase activity, oxidative stress and disruption of BBB in hippocampus and cortex of the neonate Wistar rats after meningitis by S. agalactiae. In the hippocampus the levels were increased of CINC-1 at 6 h and 12 h, IL-1β at 6, 12 and 24 h, IL-6 at 6, 24 and 96 h, IL-10 at 24, 48 and 96 h and TNF-α at 24 h and 96 h. In the cortex the CINC-1 and IL-1β levels were found increased at 6 h. The MPO activity was significantly elevated at 24, 48 and 98 h in hippocampus and at 6, 12, 24, 48 and 96 h in the cortex. The breakdown of BBB started at 12 h.TBARS levels were elevated in the hippocampus at 6, 12, 24, 48, 72 and 96 h and cortex at 72 and 96 h. Protein carbonyls were elevated in the hippocampus and cortex at 6, 24, 48, 72 and 96 h. There was a decrease of SOD activity in hippocampus and in cortex. Catalase activity was elevated in hippocampus at 6 h and in the cortex at 12 and 96 h. Neonatal bacterial infections of the CNS are severe, the interference with the complex network of cytokines/chemokine, other inflammatory mediators and oxidants tend to aggravate the illness and can be involved in the breakdown of the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

CAT:

Calatase

CFU:

Colony-forming unit

CINC-1:

Cytokine-Induced neutrophil chemoattractant

CSF:

Cerebrospinal fluid

DNA:

Deoxyribonucleic acid

DNPH:

Dinitrophenylhidrazine

GBS:

Group B Streptococcus

IL-6:

Interleukin 6

IL-1β:

Interleukin 1 betha

IL-10:

Interleukin 10

ip:

Intra peritoneal

MPO:

Myeloperoxidase activity

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive species

TNF-α:

Tumor necrosis factor alpha

References

  1. Pass MA, Gray BM, Dillon HC Jr (1982) Puerperal and perinatal infections with group B streptococci. Am J Obstet Gynecol 143:147–152

    PubMed  CAS  Google Scholar 

  2. Phares CR, Lynfield R, Farley MM et al (2008) Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. JAMA 299:2056–2065

    Article  PubMed  CAS  Google Scholar 

  3. Tumbaga PF, Philip AG (2006) Perinatal Group B streptococcal infections and the new Guidelines: an update. Neoreviews 7:530–534

    Article  Google Scholar 

  4. Lindahl G, Stålhammar-Carlemalm M, Areschoug T (2005) Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 18:102–127

    Article  PubMed  CAS  Google Scholar 

  5. Sellner J, Täuber MG, Leib SL (2010) Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 96:1–16

    Article  PubMed  Google Scholar 

  6. Verani JR, McGee L, Schrag SJ (2010) Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Prevention of perinatal group B streptococcal disease–revised guidelines from CDC. MMWR Recomm Rep 59:1–36

    PubMed  Google Scholar 

  7. Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  8. Coimbra RS, Loquet G, Leib SL (2007) Limited efficacy of adjuvant therapy with dexamethasone in preventing hearing loss due to experimental pneumococcal meningitis in the infant rat. Pediatr Res 62:291–294

    Article  PubMed  CAS  Google Scholar 

  9. Maisey HC, Doran KS, Nizet V (2008) Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med 10:27

    Article  Google Scholar 

  10. Bolduc GR, Baron MJ, Gravekamp C et al (2002) The alpha C protein mediates internalization of group B Streptococcus within human cervical epithelial cells. Cell Microbiol 4:751–758

    Article  PubMed  CAS  Google Scholar 

  11. Kim KS (2008) Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634

    Article  PubMed  CAS  Google Scholar 

  12. Yadav A, Malik GK, Trivedi R (2009) Correlation of CSF neuroinflammatory molecules with leptomeningeal cortical subcortical white matter fractional anisotropy in neonatal meningitis. Magn Reson Imaging 27:214–221

    Article  PubMed  CAS  Google Scholar 

  13. Moreillon P, Majcherczyk PA (2003) Proinflammatory activity of cell-wall constituents from gram-positive bacteria. Scand J Infect Dis 35:632–641

    Article  PubMed  CAS  Google Scholar 

  14. van Furth AM, Roord JJ, van Furth R (1996) Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 64:4883–4890

    PubMed  Google Scholar 

  15. Miric D, Katanic R, Kisic B, Zoric L, Miric B, Mitic R, Dragojevic I (2010) Oxidative stress and myeloperoxidase activity during bacterial meningitis: effects of febrile episodes and the BBB permeability. Clin Biochem 43(3):246–252

    Article  PubMed  CAS  Google Scholar 

  16. Grandgirard D, Leib SL (2010) Meningitis en Neonatos: bench to bedside. Clin Perinatol 37:655–676

    Article  PubMed  Google Scholar 

  17. Edwards MS, Rench MA, Haffar AA et al (1985) Long-term sequelae of group B streptococcal meningitis in infants. J Pedriatr 106:717–722

    Article  CAS  Google Scholar 

  18. Harvey D, Holt DE, Bedford H (1999) Bacterial meningitis in the newborn: a prospective study of mortality and morbidity. Semin Perinatol 23:218–225

    Article  PubMed  CAS  Google Scholar 

  19. Johri AK, Paoletti LC, Glaser P et al (2006) Group B Streptococcus: global incidence and vaccine development. Nat Rev Microbiol 4:932–942

    Article  PubMed  CAS  Google Scholar 

  20. Grandgirard D, Steiner O, Täuber MG et al (2007) An infant mouse model of brain damage in pneumococcal meningitis. Acta Neuropathol 114:609–617

    Article  PubMed  Google Scholar 

  21. Trampuz A, Steinhuber A, Wittwer M et al (2007) Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid. BMC Infect Dis 7:116

    Article  PubMed  Google Scholar 

  22. Barichello T, Belarmino E, Comim CM et al (2010) Correlation between behavioral deficits and decreased brain-derived neurotrophic [corretion of neutrofic] factor in neonatal meningitis. J Neuroimmunol 233:73–76

    Article  Google Scholar 

  23. Barichello T, Savi GD, Silva GZ et al (2010) Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 478:93–96

    Article  PubMed  CAS  Google Scholar 

  24. Kim KS (2010) Acute bacterial meningitis in infants and children. Lancet Infect Dis 10:32–42

    Article  PubMed  CAS  Google Scholar 

  25. De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341

    Article  PubMed  Google Scholar 

  26. Smith SL, Hall ED (1996) Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact injury in the rat. J Neurotrauma 13:1–9

    Article  PubMed  CAS  Google Scholar 

  27. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  28. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  29. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  30. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  PubMed  CAS  Google Scholar 

  31. Leib SL, Tauber MG (1999) Pathogenisis of bacterial meningitis. Infect Dis Clin North Am 13:527–548

    Article  PubMed  CAS  Google Scholar 

  32. Hirst RA, Kadioglu A, O’callaghan C et al (2004) The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 138:195–201

    Article  PubMed  CAS  Google Scholar 

  33. Klein M, Koedel U, Pfister HW (2006) Oxidative stress in pneumococcal meningitis: a future target for adjunctive therapy? Prog Neurobiol 80:269–280

    Article  PubMed  CAS  Google Scholar 

  34. Rusconi F, Parizzi F, Garlaschi L et al (1991) Interleukin 6 activity in infants and children with bacterial meningitis. The Collaborative Study on Meningitis. Pediatr Infect Dis J 10:117–121

    Article  PubMed  CAS  Google Scholar 

  35. Rosenberg GA, Estrada EY, Dencoff JE et al (1995) Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Res 703:151–155

    Article  PubMed  CAS  Google Scholar 

  36. Kim KS, Wass CA, Cross AS (1997) Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 145(1):253–257

    Article  PubMed  CAS  Google Scholar 

  37. Barichello T, Pereira JS, Savi GD et al (2011) A kinetic study of the cytokine/chemokines levels and disruption of blood-brain barrier in infant rats after pneumococcal meningitis. J Neuroimmunol 233(1–2):12–17

    Article  PubMed  CAS  Google Scholar 

  38. Zhang R, Brennan ML, Shen Z et al (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 277(48):46116–46122

    Article  PubMed  CAS  Google Scholar 

  39. Meli DN, Christen S, Leib SL (2003) Matrix metalloproteinase-9 in pneumococcal meningitis: activation via an oxidative pathway. J Infect Dis 187(9):1411–1415

    Article  PubMed  CAS  Google Scholar 

  40. Schaper M, Gergely S, Lykkesfeldt J et al (2002) Cerebral vasculature is the major target of oxidative protein alterations in bacterial meningitis. J Neuropathol Exp Neurol 61:605–613

    PubMed  CAS  Google Scholar 

  41. Koracevic D, Koracevic G, Djordjevic V et al (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361

    Article  PubMed  CAS  Google Scholar 

  42. Leib SL, Kim YS, Chow LL et al (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98(11):2632–2639

    Article  PubMed  CAS  Google Scholar 

  43. Leib SL, Kim YS, Black SM et al (1998) Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis 177(3):692–700

    Article  PubMed  CAS  Google Scholar 

  44. Pfister HW, Koedel U, Dirnagl U et al (1990) Superoxide dismutase inhibits brain oedema formation in experimental pneumococcal meningitis. Acta Neurochir 51:378–380

    CAS  Google Scholar 

  45. Pfister HW, Ködel U, Dirnagl U et al (1992) Effect of catalase on regional cerebral blood flow and brain edema during the early phase of experimental pneumococcal meningitis. J Infect Dis 166:1442–1445

    Article  PubMed  CAS  Google Scholar 

  46. Ritter C, Andrades ME, Reinke A et al (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    Article  PubMed  CAS  Google Scholar 

  47. Barichello T, Fortunato JF, Vitali AM et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34(3):886–889

    Article  PubMed  Google Scholar 

  48. Tyler KL (2008) Bacterial meningitis: an urgent need for further progress to reduce mortality and morbidity. Neurology 70:2095–2096

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq, FAPEMIG, FAPESC, UNESC and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Barichello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barichello, T., Lemos, J.C., Generoso, J.S. et al. Oxidative Stress, Cytokine/Chemokine and Disruption of Blood–Brain Barrier in Neonate Rats After Meningitis by Streptococcus agalactiae . Neurochem Res 36, 1922–1930 (2011). https://doi.org/10.1007/s11064-011-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0514-2

Keywords

Navigation