Skip to main content
Log in

Effects of ascorbic acid, alpha-tocopherol, and glutathione on microspore embryogenesis in Brassica napus L.

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The impact of culture conditions and addition of antioxidants to media on microspore embryogenesis in rapeseed (Brassica napus cv. ‘PF704’) was investigated. Different concentrations of ascorbic acid (0, 5, 10, 20, 50, 100, and 200 mg l−1) and alpha (α)-tocopherol (0, 5, 10, 20, 50, 100, and 200 mg l−1) were evaluated along with two temperature pretreatments (18 d at 30°C; 2 d at 32.5°C followed by 16 d at 30°C). In addition, combinations of reduced glutathione (0, 10, 50, and 100 mg l−1) and ascorbic acid (5 and 10 mg l−1) were tested. Microspore embryogenesis was significantly enhanced using 10 mg l−1 ascorbic acid (334 embryos per Petri dish) compared with untreated cultures (184 embryos per Petri dish) at 30°C. α-Tocopherol (5 and 10 mg l−1) enhanced (312 and 314 embryos per Petri dish, respectively) microspore embryogenesis relative to untreated cultures (213 embryos per Petri dish) at 30°C, although there were no significant differences among cultures treated with 5–50 mg l−1 α-tocopherol. When 50 mg l−1 α-tocopherol was combined with 5 or 10 mg l−1 ascorbic acid, embryogenesis was significantly enhanced (308 and 328 embryos per Petri dish, respectively) relative to other ascorbic acid levels. Moreover, 10 mg l−1 of reduced glutathione and 5 mg l−l ascorbic acid enhanced microspore embryogenesis (335 embryos per Petri dish) compared to cultures without reduced glutathione (275 embryos per Petri dish). Microspore embryogenesis could be improved by adding ascorbic acid, α-tocopherol, and reduced glutathione when the appropriate combination and temperature pretreatment were selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Ahmadi B.; Alizadeh K.; Teixeira da Silva J. A. Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell Tissue Organ Cult. 105: 525–533; 2012a.

    Article  Google Scholar 

  • Ahmadi B.; Ghadimzadeh M.; Moghaddam A. F.; Alizadeh K.; Teixeira da Silva J. A. Bud length, plating density, and incubation time on microspore embryogenesis in Brassica napus. Int. J. Veg. Sci. 18: 346–357; 2012b.

    Article  Google Scholar 

  • Ambrus H.; Darko É.; Király Z.; Barnabás B. Effect of ROS progenitors on the sporophytic development of maize microspores. Acta Biol. Szeged. 49: 25–28; 2005.

    Google Scholar 

  • Athar H. R.; Khan A.; Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ. Exp. Bot. 63: 224–231; 2008.

    Article  CAS  Google Scholar 

  • Belmonte M. F.; Stasolla C.; Loukanina N.; Young E. C.; Thorpe T. A. Glutathione modulation of purine metabolism in cultured white spruce embryogenic tissue. Plant Sci. 165: 1377–1385; 2003.

    Article  CAS  Google Scholar 

  • Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr. Sci. 89: 1113–1121; 2005.

    CAS  Google Scholar 

  • Chen Z.; Gallie D. R. Induction of monozygotic twinning by ascorbic acid in tobacco. PLoS One 7(6): e39147; 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coventry J.; Kott L. S. Doubled haploid technology for spring and winter Brassica napus (revised ed.) OAC Publication, University of Guelph, Ontario, Canada; Technol Bull.; 1998: 42 p.

  • de Carvalho M. H. C. Drought stress and reactive oxygen species. Plant Sig. Behav. 3: 156–165; 2008.

    Article  Google Scholar 

  • De Pinto M. C.; De Gara L. Changes in the ascorbate metabolism of apoplastic and symplastic space are associated with cell differentiation. J. Exp. Bot. 55: 2559–2569; 2004.

    Article  PubMed  Google Scholar 

  • De Tullio M. C.; Paciolla C.; Vecchia F. D.; Rascio N.; D’Emerico S.; De Gara L.; Liso R.; Arrigoni O. Changes in onion root development induced the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. Planta 209: 424–434; 1999.

    Article  PubMed  Google Scholar 

  • Ferrie A. M. R.; Caswell K. L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult. 104: 301–309; 2011.

    Article  Google Scholar 

  • Ferrie A. M. R.; Keller W. A. Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in Brassicaceae. In Vitro Cell. Dev. Biol. Plant 43: 348–355; 2007.

    Article  CAS  Google Scholar 

  • Ferrie A. M. R.; Taylor D. C.; MacKenzie S. L.; Keller W. A. Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tissue Organ Cult. 57: 79–84; 1999.

    Article  CAS  Google Scholar 

  • Gallie D. R. l-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013: 1–24; 2013.

    Article  Google Scholar 

  • Gamborg O. L.; Miller R. A.; Ojima L. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.

    Article  CAS  PubMed  Google Scholar 

  • Gill S. S.; Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 42: 909–930; 2010.

    Article  Google Scholar 

  • Habibi N.; Suthar P. K.; Purohit S. D. Role of PGRs and inhibitors in induction and control of somatic embryogenesis in Themeda quadrivalvis. Indian J. Exp. Biol. 47: 198–203; 2009.

    CAS  PubMed  Google Scholar 

  • Huang B.; Bird S.; Kemble R.; Miki B.; Keller W. Plant regeneration from microspore-derived embryos of Brassica napus: effect of embryo age, culture temperature, osmotic pressure, and abscisic acid. In Vitro Cell. Dev. Biol. Plant 27: 28–31; 1991.

    Article  Google Scholar 

  • Jiang K.; Ballinger T.; Li D.; Zhang S.; Feldman L. J. A role for mitochondria in the establishment and maintenance of the maize root quiescent center. Plant Physiol. 140: 1118–1125; 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li S.; Xue L.; Xu S.; Feng H.; An L. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul. 52: 173–180; 2007.

    Article  CAS  Google Scholar 

  • Li S.; Xue L.; Xu S.; Feng H.; An L. Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ. Exp. Bot. 65: 63–71; 2009a.

    Article  CAS  Google Scholar 

  • Li S.; Xue L.; Xu S.; Feng S.; An L. IBA-induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: the role of H2O2. Environ. Exp. Bot. 66: 442–450; 2009b.

    Article  CAS  Google Scholar 

  • Liao W.; Xiao H.; Zhang M. Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol. Plant. 31: 1279–1289; 2009.

    Article  CAS  Google Scholar 

  • Lichter R. Induction of haploid plants from isolated pollens of Brassica napus. Z. Pflanzenphysiol. 105: 427–434; 1982.

    Article  Google Scholar 

  • Liso R.; Innocenti A. M.; Bitonti M. B.; Arrigoni O. Ascorbic acid induced progression of quiescent centre cells from G1 to S phase. New Phytol. 110: 469–471; 1988.

    Article  CAS  Google Scholar 

  • Liszkay A.; van der Yalm E.; Schopfer P. Production of reactive oxygen intermediates (O2 •–, H2O2 and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 135: 3114–3123; 2004.

    Article  Google Scholar 

  • Miyake C.; Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product, monodehydroascorbate radicals in the thylakoids. Plant Cell Physiol. 33: 541–553; 1992.

    CAS  Google Scholar 

  • Pagnussat G. C.; Simontacchi M.; Puntarulo S.; Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol. 129: 954–956; 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palmer C. E.; Keller W. A.; Kasha K. J. Haploids in crop improvement II. Springer, Berlin; 2005.

    Book  Google Scholar 

  • Prem D.; Gupta K.; Agnihotri A. Effect of various exogenous and endogenous factors on microspore embryogenesis in Indian mustard (Brassica juncea L. Czern and Coss). In Vitro Cell. Dev. Biol. Plant 41: 266–273; 2005.

    Article  Google Scholar 

  • Prem D.; Solís M.-T.; Bárány I.; Rodríguez-Sanz H.; Risueño M. C.; Testillano P. S. A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol. 12: 127; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Serrano M.; Bárány I.; Prem D.; Coronado M. J.; Risueño M. C.; Testilano P. S. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J. Exp. Bot. 63: 2007–2024; 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sánchez-Fernández R.; Flicker M.; Corben L. B.; White N. S.; Sheard N. S.; Leaver C. J.; Van Montagu M.; Inzé D.; May M. J. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc. Natl. Acad. Sci. U. S. A. 94: 2745–2750; 1997.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schopfer P.; Liszkay A.; Bechtold M.; Frahry G.; Wagner A. Evidence that hydroxyl radicals mediate auxin-induced extension growth. Plant J. 28: 679–688; 2002.

    Article  Google Scholar 

  • Seguí-Simarro J. M.; Nuez F. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol. Plant. 134: 1–12; 2008.

    Article  PubMed  Google Scholar 

  • Shanker A. K.; Djanaguiraman M.; Sudhagar R.; Chandrashekar C. N.; Pathmanabhan G. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant Sci. 166: 1035–1043; 2004.

    Article  CAS  Google Scholar 

  • Shi Y.; Xu G.; Warrington T. B.; Murdoch G. K.; Kazala E. C.; Snyder C. L.; Weselake R. J. Microspore-derived cell suspension cultures of oilseed rape as a system for studying gene expression. Plant Cell Tissue Organ Cult. 92: 131–139; 2008.

    Article  CAS  Google Scholar 

  • Shohael A.; Ali M.; Hahn E.; Paek K. Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell Tissue Organ Cult. 89: 121–129; 2007.

    Article  CAS  Google Scholar 

  • Smirnoff N. Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N. (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, Oxford, pp 53–86; 2005.

    Chapter  Google Scholar 

  • Stasolla C.; Yeung E. C. Cellular ascorbic acid regulates the activity of major peroxidase in the apical poles of germinating white spruce (Picea glauca) somatic embryos. Plant Physiol. Biochem. 45: 188–198; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva J. A. Impact of paper bridges, activated charcoal, and antioxidants on growth and development of protocorm-like bodies of hybrid Cymbidium. In Vitro Cell. Dev. Biol. Plant 49: 414–420; 2013.

    Article  CAS  Google Scholar 

  • Traber M. G.; Stevens J. F. Vitamin C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51: 1000–1013; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 428: 419–438; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T.; Wilson R. C.; Seeley K. A.; Reichheld J. P.; Muroy S.; Brown S.; Maughan S. C.; Cobbett C. S.; Van Montagu M.; Inzé D.; May M. J.; Sung Z. R. The ROOT MERISTEMLESS 1/CADMIUM SENSITIVE 2 gene defines a glutathione-dependant pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97–109; 2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira L. D. N.; Santa-Catarina C.; Fraga H. P. D. F.; Santos A. L. W. D.; Steinmacher D. A.; Schlogl P. S.; Silveira V.; Steiner N.; Floh E. I. S.; Guerra M. P. Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci. 195: 80–87; 2012.

    Article  CAS  Google Scholar 

  • Wang X.; Quinn P. J. Vitamin E and its function in membranes. Prog. Lipid Res. 38: 309–336; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Weselake R. J. Storage lipids. In: Murphy D. J. (ed) Plant lipids: biology, utilization, and manipulation. Blackwell Publishing, Oxford, pp 162–221; 2005.

    Google Scholar 

  • Winarto B.; Teixeira da Silva J. A. Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell Tissue Organ Cult. 107: 305–315; 2011.

    Article  Google Scholar 

  • Zeng X.; Weng J.; Wan Z.; Yi B.; Shen J.; Ma C.; Tu J.; Fu T. Effects of bleomycin on microspore embryogenesis in Brassica napus and detection of somaclonal variation using AFLP molecular marker. Plant Cell Tissue Organ Cult. 101: 23–29; 2010.

    Article  CAS  Google Scholar 

  • Zhang G. Q.; Zhang D. Q.; Tang G. X.; He Y.; Zhou W. J. Plant development from microspore-derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biol. Plant. 50: 180–186; 2006.

    Article  Google Scholar 

  • Zur L.; Dubas F.; Golemier F.; Szechynska-Hebda M.; Golehiowska G.; Wedzony M. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Rep. 28: 1279–1287; 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Ahmadi.

Additional information

Editor: John Chen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoseini, M., Ghadimzadeh, M., Ahmadi, B. et al. Effects of ascorbic acid, alpha-tocopherol, and glutathione on microspore embryogenesis in Brassica napus L.. In Vitro Cell.Dev.Biol.-Plant 50, 26–35 (2014). https://doi.org/10.1007/s11627-013-9579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9579-8

Keywords

Navigation