Skip to main content
Log in

Microspore culture protocol for Indonesian Brassica oleracea

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A microspore culture protocol for Brassica oleracea of Indonesian origin (cv. ‘Kemeh’) has been successfully established. A high number of embryos formed with high microspore density i.e. 15 × 104 cells/ml. Embryo formation was improved by using flower buds (4.5–4.6 mm in length) as explants, a temperature treatment at 30.5°C for 48 h and then transfer to 25°C continuously until embryos formed. A total of 295 embryos were obtained from 189 buds, 30% of which were abnormal (i.e. with an abnormal cotyledon or lacking hypocotyls). All normal embryos that grew and survived, 165 in total, were successfully transferred to soil and grew well in plastic bags (15 cm in diameter) containing a mixture of burned-rice husk and organic manure (1:1, v/v).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraha E, Bechyn M, Klíma M, Vyvadilová M (2008) Analysis of factors affecting embryogenesis in microspore cultures of Brassica carinata. Agricultura Tropica et Subtropica 41(2):53–59

    Google Scholar 

  • Agarwal PK, Agarwal P, Custers JBM, Liu CM, Bhojwani SS (2006) PCIB, an antiauxin, enhances microspore embryogenesis in microspore culture of Brassica juncea. Plant Cell Tissue Organ Cult 86:201–210

    Article  CAS  Google Scholar 

  • Ali MM, Mian MAK, Custers JBM, Khuram MMH (2008) Microspore culture and the performance of microspore derived doubled haploid in Brassica juncea (L.). Bangladesh J Agric Res 33(3):571–578

    Google Scholar 

  • Anandarajah K, Kott L, Beversdorf WD, McKersie BD (1991) Induction of desiccation tolerance in microspore-derived embryos of Brassica napus L. by thermal stress. Plant Sci 77:119–123

    Article  Google Scholar 

  • Ashihara H, Luit B, Belmonte M, Stasolla C (2008) Metabolism of nicotinamide, adenine and inosine in developing microspore-derived canola (Brassica napus) embryos. Plant Physiol Biochem 46(8–9):752–759

    Article  PubMed  CAS  Google Scholar 

  • Chanana NP, Dhawan V, Bhojwani SS (2005) Morphogenesis in isolated microspore cultures of Brassica juncea. Plant Cell Tissue Organ Cult 83:169–177

    Article  Google Scholar 

  • Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226

    Article  Google Scholar 

  • Coventry J, Kott L, Beversdorf WD (1988) Manual for microspore culture technique for Brassica napus. University of Guelph, Guelph

    Google Scholar 

  • Custers JBM (2003) Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 185–194

    Google Scholar 

  • Dias JS (2001) Effect of incubation temperature regimes and culture medium on broccoli microspore culture embryogenesis. Euphytica 199:389–394

    Article  Google Scholar 

  • Dias JS, Correia MC (2002) Effect of medium renovation and incubation temperature regimes on tronchuda cabbage microspore culture embryogenesis. Sci Hort 93(3–4):205–214

    Article  Google Scholar 

  • Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61(14):4069–4085

    Article  PubMed  CAS  Google Scholar 

  • Ferrie AMR, Caswell KL (2010) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104(3):301–309

    Article  Google Scholar 

  • Ferrie AMR, Möller C (2010) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tissue Organ Cult 104(3):375–386

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Guo YD, Pulli S (1996) High-frequency embryogenesis in Brassica campestris microspore culture. Plant Cell Tissue Organ Cult 46:219–225

    Article  Google Scholar 

  • Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Development 125:879–887

    PubMed  CAS  Google Scholar 

  • Huang B, Bird S, Kemble R, Simmonds D, Keller WA, Miki B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus. Plant Cell Rep 8:594–597

    Article  Google Scholar 

  • Huang B, Bird S, Kemble R, Miki B, Keller W (1991) Plant regeneration from microspore-derived embryos of Brassica napus: effect of embryo age, culture temperature, osmotic pressure, and abscisic acid. In Vitro Cell Dev Biol Plant 27:28–31

    Article  Google Scholar 

  • Kott LS, Polsoni L, Ellis B, Beversdorf WD (1988) Autotoxicity in isolated microspore cultures of Brassica napus. Can J Bot 66:1665–1670

    Article  Google Scholar 

  • Lemonnier-Le Penhuizic C, Chatelet C, Kloareg B, Potin P (2001) Carrageenan oligosaccharides enhance stress-induced microspore embryogenesis in Brassica oleracea var italica. Plant Sci 160(6):1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Planzenphysiol 105:427–433

    Google Scholar 

  • Pechan PM, Keller WA (1988) Identification of potentially embryogenic microspores in Brassica napus. Physiol Plant 74:377–384

    Article  Google Scholar 

  • Prem D, Gupta K, Agnihotri A (2005) Effect of various endogenous and exogenous factors on microspore embryogenesis in Indian mustard (Brassica juncea (L.) Cern and Coss). In Vitro Cell Dev Biol Plant 41:266–273

    Article  Google Scholar 

  • Prem D, Gupta K, Sarkar G, Agnihotri A (2008) Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tissue Organ Cult 93:269–282

    Article  CAS  Google Scholar 

  • Shi Y, Xu G, Warrington TB, Murdoch GK, Kazala EC, Snyder CL, Weselake RJ (2008) Microspore-derived cell suspension cultures of oilseed rape as a system for studying gene expression. Plant Cell Tissue Organ Cult 92:131–139

    Article  CAS  Google Scholar 

  • Smýkalová I, Větrovcová M, Klíma M, Macháčková I, Griga M (2006) Efficiency of microspore culture for doubled haploid production in the breeding project “Czech Winter Rape”. Czech J Genet Plant Breed 42(2):58–71

    Google Scholar 

  • Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10

    Article  PubMed  CAS  Google Scholar 

  • Supena EDJ, Winarto B, Riksen T, Dubas E, van Lammeren A, Offringa R, Boutilier K, Custers JBM (2008) Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot 59(4):803–814

    Article  PubMed  CAS  Google Scholar 

  • Takahata Y, Keller WA (1991) High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74(2):235–242

    Article  Google Scholar 

  • Takahata Y, Takani Y, Kaizuma N (1993) Determination of microspore population to obtain high frequency embryogenesis in broccoli (Brassica oleracea L.). Plant Tissue Cult Lett 10(1):49–53

    Google Scholar 

  • Takahira J, Cousin A, Nelson MN, Cowling WA (2010) Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell Tissue Organ Cult (Published Online 30 July 2010)

  • Taylor DC, Weber N, Underhill EW, Pomeroy MK, Keller WA, Scowcroft WR, Wilen RW, Moloney MM, Holbrook LA (1990) Storage protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta 181:18–25

    Article  CAS  Google Scholar 

  • Telmer CA, Simmonds DH, Newcomb W (1992) Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiol Plant 84:417–424

    Article  Google Scholar 

  • Tian H, Yao CY, Sun MX (2004) High frequency conversion of microspore-derived embryos of Brassica napus cv. Topas by supplemental calcium and vitamins. Plant Cell Tissue Organ Cult 76:159–165

    Article  CAS  Google Scholar 

  • Touraev A, Vincente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Wan GL, Naeem MS, Geng XX, Xu L, Li B, Jilani G, Zhou WJ (2011) Optimization of microspore embryogenesis and plant regeneration protocols for Brassica napus. Int J Agric Biol 13:83–88

    CAS  Google Scholar 

  • Wang TT, Li HX, Zhang J, Ouyang B, Lu Y, Ye Z (2009) Initiation and development of microspore embryogenesis in recalcitrant purple flowering stalk (Brassica campestris ssp. chinensis var. purpurea Hort) genotypes. Sci Hort 121(4):419–424

    Article  Google Scholar 

  • Westfall PH, Tobias RD, Rom D, Wolfinger RD, Hochberg Y (1999) Multiple comparisons and multiple tests: using the SAS system. SAS Publishing, SAS Institute Inc, Cary, NC

    Google Scholar 

  • Xu L, Najeeb U, Tang GX, Gu HH, Zhang GQ, He Y, Zhou WJ (2007) Haploid and doubled haploid technology. In: Gupta SK, Delseny M, Kader JC (eds) Rapeseed breeding. Adv Bot Res 45:181–216

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, The Netherlands, pp 205–247

    Chapter  Google Scholar 

  • Yeung EC (2002) The canola microspore-derived embryo as a model system to study developmental process in plants. J Plant Biol 45(3):119–133

    Article  Google Scholar 

  • Zaki M, Dickinson H (1995) Modification of cell development in vitro: the effect of colchicine on anther and isolated microspore culture in Brassica napus. Plant Cell Tissue Organ Cult 40:255–270

    Article  CAS  Google Scholar 

  • Zhang W, Fu Q, Dai X, Bao M (2008) The culture of isolated microspores of ornamental kale (Brassica oleracea var. acephala) and the importance of genotype to embryo regeneration. Sci Hort 117(1):69–72

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Budi Winarto would like to express his gratitude to Dr. Jan B. M. Custers and his assistant Tjitske Rikson for their invaluable guidance and encouragement during his training on Brassica microspore culture in conjunction with transfer of haploid technology to Indonesia at Plant Research International, Wageningen, The Netherlands. Dr. Winarto is also thankful to the Agency of The Dutch Ministry of Economic Affairs and International Agricultural Centre (IAC), Wageningen, The Netherlands for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Budi Winarto or Jaime A. Teixeira da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winarto, B., Teixeira da Silva, J.A. Microspore culture protocol for Indonesian Brassica oleracea . Plant Cell Tiss Organ Cult 107, 305–315 (2011). https://doi.org/10.1007/s11240-011-9981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9981-z

Keywords

Navigation