Skip to main content
Log in

Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Compared to non-embryogenic callus, proembryonic mass, globular, and heart-shaped embryos of Eleutherococcus senticosus had higher levels of endogenous reduced glutathione (GSH). GSH content declined during the course of the embryo development (torpedo and cotyledon). Similarly, glutathione reductase that is involved in the recycling of GSH providing a constant intracellular level of GSH was also higher in globular and heart-shaped embryos. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase activity over the same period. The endogenous levels of oxidized glutathione showed similar trend during development of the somatic embryos, whereas it declined in maturing somatic embryos. A pronounced increase in glutathione-S-transferase, glutathione peroxidase, catalase, and guaiacol peroxidase activity was observed during somatic embryo maturation. Ascorbate-glutathione cycle enzymes (ascorbate peroxidase; dehydroascorbate reductase and monodehydroascorbate reductase) activities also induced indicated that antioxidant enzymes played an important role during embryo development. These results suggested that the coordinated up-regulations of the antioxidant enzymes and glutathione redox system provide protection during somatic embryo development in E. senticosus. Antioxidant responses through alterations of the glutathione redox systems, have been described in the present studies have a significant role in somatic embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase (EC 1.11.1.11)

CAT:

Catalase (EC 1.11.1.6)

2, 4 D:

2, 4-dichlorophenoxyaceticacid

DHAR:

Dehydroascorbate reductase (EC 1.8.5.1)

DHA:

Dehydroascorbate

γ-GCS:

Glutamylcysteine synthetase

GST:

Glutathione-S-transferase (EC 2.5.1.18)

GPx:

Glutathione peroxidase (EC 1.11.1.12)

GR:

Glutathione reductase (EC 1.6.4.2)

G-POD:

Guaiacol peroxidase (EC 1.11.1.7)

MDHAR:

Monodehydroascorbate reductase (EC 1.6.5.4)

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

References

  • Aderkas PV, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • Aebi H (1984) Catalases. In: Bergmeyer HU (eds) Methods of enzymatic analysis 2. Academic Press, New York, pp 673–684

    Google Scholar 

  • Asada K (2000) The water–water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society of London, Series B. Biol Sci 355:1419–1431

    Article  CAS  Google Scholar 

  • Belmonte MF, Donald G, Reid DM, Yeung EC, Stasolla C (2005) Alterations of the glutathione redox state improve apical meristem structure and osmotic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds. Physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Cordewener J, Booij H, van der Zett H, van Engelen F, van Kammen A, de Vries SC (1991) Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta 184:478–486

    Article  CAS  Google Scholar 

  • Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. J Ethnopharmacol 72:345–393

    Article  PubMed  CAS  Google Scholar 

  • De Gara L, Tommasi F (1999) Ascorbate redox enzymes: a network of reactions involved in plant development. Recent Res Dev Phytochem 3:1–15

    Google Scholar 

  • De Gara L, de Pinto MC, Moliterni VMC, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258

    Article  PubMed  Google Scholar 

  • de Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Article  PubMed  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill S (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize. Plant Physiol 114:1031–1037

    PubMed  CAS  Google Scholar 

  • Droter A, Phelps P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:35–40

    Article  Google Scholar 

  • Fahey RC, Deena L, Di Stefano G, Meier P, Bryan RN (1980) Role of dehydration state and thiosulphide status in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiol 65:1062–1066

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gardiner CS, Salmen JJ, Brandt CJ, Stover SK (1998) Glutathione is present in reproductive tract secretions and improves development of mouse embryos after chemically induced glutathione depletion. Biol Reprod 59:431–436

    Article  PubMed  CAS  Google Scholar 

  • Gomez LD, Noctor G, Knight MR, Foyer CH (2004) Regulation of calcium signalling and gene expression by glutathione. J Exp Bot 55:1851–1859

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–211

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine. Oxford University Press, Oxford, UK

    Google Scholar 

  • Huang HC, Sherman MY, Kandror O, Goldberg AL (2001) The molecular chaperone dnaj is required for the degradation of a soluble abnormal protein in Escherichia coli. J Biol Chem 276:3920–3928

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Kumar HGA, Murthy HN, Paek KY (2002) Somatic embryogenesis and plant regeneration in Gymnema sylvestre. Plant Cell Tiss Org Cult 71:85–88

    Article  Google Scholar 

  • Martin KP (2003) Plant regeneration through somatic embryogenesis on Holostemma ada-kodien, a rare medicinal plant. Plant Cell Tiss Org Cult 72:79–82

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Abiotic stress series. Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signaling. Curr Opinion Plant Biol 5:388–395

    Article  CAS  Google Scholar 

  • Nocter G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor system for large scale production of horticultural and medicinal plants. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, The Netherlands, pp 95–116

    Chapter  Google Scholar 

  • Pagila DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70:158–169

    Google Scholar 

  • Pütter J (1974) Peroxidases. In: Bergmeyer HU (eds) Methods of enzymatic analysis. Academic Press, New York, pp 685–690

    Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Rhazi L, Cazalis R, Lemelin E, Aussenac T (2003) Changes in the glutathione thiol-disulfide status during wheat grain development. Plant Physiol Biochem 41:895–902

    Article  CAS  Google Scholar 

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci 94:2745–2750

    Article  PubMed  CAS  Google Scholar 

  • Shohael AM, Chakrabarty D, Yu KW, Hahn EJ, Paek KY (2005) Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutherosides. J Biotechnol 120:228–236

    Article  PubMed  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci 97:10032–10037

    Article  PubMed  CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 362:1647–1654

    Article  Google Scholar 

  • Van Engelen FA, de Vries SC (1992) Extracellular proteins in plant embryogenesis. Trends Genet 8:66–70

    PubMed  Google Scholar 

  • Volohonsky G, Tuby CNYH, Porat N, Wellman-Rousseau M, Visvikis A, Leroy P, Rashi S, Steinberg P, Stark A (2002) A spectrophotometric assay of γ-glutamylcysteine synthetase and glutathione synthetase in crude extracts from tissues and cultured mammalian cells. Chem Biol Interact 140:49–65

    Article  PubMed  CAS  Google Scholar 

  • Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Ann Rev Plant Physiol Plant Mole Biol 49:585–609

    Article  CAS  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mole Breed 1:207–228

    Article  CAS  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210

    Article  PubMed  CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (eds) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 205–249

    Google Scholar 

  • Yeung EC, Brown DCW (1982) The osmotic environment of developing embryos of Phaseolus vulgaris. Z Pflanz 106:149–156

    Google Scholar 

  • Yeung EC, Belmonte MF (2004) The effects of reduced and oxidized glutathione on white spruce somatic embryogenesis. In Vitro Cell Dev Biol Plant 40:61–66

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Human Resources Development (MOE), the Ministry of commerce, Industry and Energy (MOCIE) and the Ministry of Labour (MOLAB), Republic of Korea through the fostering project of the lab of Excellency. One of the authors (MBA) wishes to acknowledge the Japanese Society for the Promotion of Science (JSPS) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shohael, A.M., Ali, M.B., Hahn, E.J. et al. Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell Tiss Organ Cult 89, 121–129 (2007). https://doi.org/10.1007/s11240-007-9220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9220-9

Keywords

Navigation