Skip to main content
Log in

Culture of neural cells of the eyestalk of a mangrove crab is optimized on poly-l-ornithine substrate

  • Methods Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Although there is a considerable demand for cell culture protocols from invertebrates for both basic and applied research, few attempts have been made to culture neural cells of crustaceans. We describe an in vitro method that permits the proliferation, growth and characterization of neural cells from the visual system of an adult decapod crustacean. We explain the coating of the culture plates with different adhesive substrates, and the adaptation of the medium to maintain viable neural cells for up to 7 days. Scanning electron microscopy allowed us to monitor the conditioned culture medium to assess cell morphology and cell damage. We quantified cells in the different substrates and performed statistical analyses. Of the most commonly used substrates, poly-l-ornithine was found to be the best for maintaining neural cells for 7 days. We characterized glial cells and neurons, and observed cell proliferation using immunocytochemical reactions with specific markers. This protocol was designed to aid in conducting investigations of adult crustacean neural cells in culture. We believe that an advantage of this method is the potential for adaptation to neural cells from other arthropods and even other groups of invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott NJ (1995) Morphology of nonmammalian glial cells: functional implications. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 97–116

    Google Scholar 

  • Alexander J, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, MacDonald TL, Sundberg RJ, Rebhun LI, Frankfurter A (1991) Characterization of posttranslational modifications in neuron-specific class III/8-tubulin by mass spectrometry. Proc Natl Acad Sci USA 88:4685–4689

    Article  CAS  Google Scholar 

  • Allen NJ, Barres BA (2009) Glia—more than just brain glue. Neuroscience 457:675–677

    CAS  Google Scholar 

  • Allodi S, Silva SF, Taffarel M (1999) Glial cells of the central nervous system in the crab Ucides cordatus. Invert Biol 118:175–183

    Article  Google Scholar 

  • Allodi S, Bressan CM, Carvalho SL, Cavalcante LA (2006) Regionally specific distribution of the binding of anti-glutamine synthetase and anti-S100 antibodies and of Datura stramonium lectin in glial domains of the optic lobe of the giant prawn. Glia 53:612–620

    Article  Google Scholar 

  • Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  Google Scholar 

  • Beadle DJ (2006) Insect neuronal cultures: an experimental vehicle for studies of physiology, pharmacology and cell interactions. Invert Neurosci 6:95–103

    Article  CAS  Google Scholar 

  • Beltz BS, Zhang Y, Benton JL, Sandeman DC (2011) Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? Eur J Neurosci 34:870–883

    Article  Google Scholar 

  • Chaves da Silva PG, Barros CM, Lima FRS, Biancalana A, Martinez AMB, Allodi S (2010) Identity of the cells recruited to a lesion in the central nervous system of a decapod crustacean. Cell Tissue Res 342:179–189

    Article  Google Scholar 

  • Chaves da Silva PG, Benton JL, Beltz BS, Allodi S (2012) Adult neurogenesis: ultrastructure of a neurogenic niche and neurovascular relationships. PLoS ONE 7:39267

    Article  Google Scholar 

  • Chaves da Silva PG, Benton JL, Sandeman DC, Beltz B (2013) Adult neurogenesis in the crayfish brain: the hematopoietic anterior proliferation center has direct access to the brain and stem cell niche. Stem Cells Dev 222:1–15

    Google Scholar 

  • Chun-Lei G, Jin-Sheng S, Jian-Hai X (2003) Primary culture and characteristic morphologies of medulla terminalis neurons in the eyestalks of Chinese shrimp, Fenneropenaeus chinensis. J Exp Mar Biol Ecol 290:71–80

    Article  Google Scholar 

  • Corrêa CL, Silva SF, Lowe J, Tortelote GG, Einicker-Lamas M, Martinez AMB, Allodi S (2004) Identification of a neurofilament like protein in the protocerebral tract of the crab Ucides cordatus. Cell Tissue Res 318:609–615

    Article  Google Scholar 

  • Corrêa CL, Silva PGC, Pereira MJS, Allodi S, Martinez AMB (2008) Electron microscopy and morphometric analyses of microtubules in two differently sized types of axons in the protocerebral tract of a crustacean. Micr Res Tech 71:214–219

    Article  Google Scholar 

  • Corty MM, Freeman MR (2013) Architects in neural circuit design: Glia control neuron numbers and connectivity. J Cell Biol 203:395–405

    Article  CAS  Google Scholar 

  • da Silva SF, Allodi S (2000) A comparative study of neurons and glial cells in the lamina ganglionaris of two crustaceans. Braz J Morphol Sci 17:31–34

    Google Scholar 

  • da Silva SF, Taffarel M, Allodi S (2001) Crustacean visual system: an investigation on glial cells and their relation to extracellular matrix. Biol Cell 93:293–299

    Article  Google Scholar 

  • da Silva SF, Bressan CM, Cavalcante LA, Allodi S (2003) Binding of an antibody against a noncompact myelin protein to presumptive glial cells in the visual system of the crab Ucides cordatus. Glia 43:292–298

    Article  Google Scholar 

  • da Silva SF, Correa CL, Tortelote GG, Einicker-Lamas M, Martinez AM, Allodi S (2004) Glial fibrillary acidic protein (GFAP)-like immunoreactivity in the visual system of the crab Ucides cordatus (Crustacea, Decapoda). Biol Cel 96:727–734

    Article  Google Scholar 

  • Duffy SS, Lees JG, Moalem-Tayler G (2014) The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int. doi:10.1155/2014/285245

    Google Scholar 

  • Freshney RI (2005) Culture of animal cells: a manual of basic technique. Wiley, New Jersey, pp 115–128

  • Fusco MA, Wajsenzon IJ, de Carvalho SL, da Silva RT, Einicker-Lamas M, Cavalcante LA, Allodi S (2014) Vascular endothelial growth factor-like and its receptor in a crustacean optic ganglia: a role in neuronal differentiation? Biochem Biophys Res Commun 447:299–303

    Article  CAS  Google Scholar 

  • George SK, Dhar AK (2010) An improved method of cell culture system from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of Penaeus vannamei. In Vitro Cell Dev Biol Anim 46:801–810

    Article  Google Scholar 

  • Hartline DK (2011) The evolutionary origins of glia. Glia 59:1215–1236

    Article  Google Scholar 

  • Hollmann G, Ferreira GJ, Geihs MA, Vargas MA, Nery LEM, Leitão A, Linden R, Allodi S (2015) Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean. Aquat Toxicol 160:151–162

    Article  CAS  Google Scholar 

  • Hu JY, Levine A, Sung YJ, Schacher S (2015) cJun and CREB2 in the postsynaptic neuron contribute to persistent long-term facilitation at a behaviorally relevant synapse. J Neurosci 35:386–395

    Article  Google Scholar 

  • Jiang YS, Zhan WB, Wang SB, Xing J (2006) Development of primary shrimp hemocyte cultures of Penaeus chinensis to study white spot syndrome virus (WSSV) infection. Aquaculture 253:114–119

    Article  Google Scholar 

  • Jose S, Jayesh P, Mohandas A, Philip R, Singh ISB (2011) Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Mar Environ Res 71:169–177

    Article  CAS  Google Scholar 

  • Lee MK, Rebhun LI, Frankfurter A (1990) Posttranslational modification of class III β 3-tubulin. Proc Natl Acad Sci USA 87:7195–7199

    Article  CAS  Google Scholar 

  • Lin CK (1995) Progression of intensive marine shrimp culture in Thailand. World Aquaculture Society, Baton Rouge p, pp 13–23

    Google Scholar 

  • Matheson T (2002) Invertebrate nervous systems. Encycl Life Sci. doi:10.1002/047001590X

    Google Scholar 

  • Maurer RH (1992) Towards serum-free, chemically defined media for mammalian cell culture. Animal cell culture: a practical approach. IRL Press at Oxford University Press, Oxford, pp 15–46

  • Miguel NCO, Meyer-Rochow VB, Allodi S (2002) Ultrastructural study of first and second order neurons in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Micron 33:627–637

    Article  Google Scholar 

  • Miguel NCO, Wajsenzon IJR, Allodi S (2005) The expression of catalase in the system of the crab Ucides cordatus. Nauplius 13:159–166

    Google Scholar 

  • Miguel NCO, Wajsenzon IJR, Takiya CM, Andrade LR, Tortelote GG, Einicker-Lamas M, Allodi S (2007) Catalase, Bax and p53 expression in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Cell Tissue Res 329:159–168

    Article  Google Scholar 

  • Mitsuhashi J (2002) Invertebrate tissue culture methods. Springer, Tokyo, pp 269–277

    Book  Google Scholar 

  • Noonin C, Lin X, Jiravanichpaisal P, Söderhäll K, Söderhäll I (2012) Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain. Stem Cells Dev 21:3173–3186

    Article  CAS  Google Scholar 

  • Odintsova NA, Dyachuk VA, Nezlin LP (2010) Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia). Cell Tissue Res 338:625–637

    Article  Google Scholar 

  • Pearce J, Lnenicka GA, Govind CK (2003) Regenerating crayfish motor axons assimilate glial cells and sprout in cultured explants. J Comp Neurol 464:449–462

    Article  Google Scholar 

  • Pentreath VW (1987) Functions of invertebrate glia. Nervous system in invertebrates. Plenum Press, New York, pp 61–103

    Chapter  Google Scholar 

  • Perígolo-Vicente R, Ritt K, Pereira MR, Torres PM, Paes-de-Carvalho R, Giestal-de-Araujo E (2013) IL-6 treatment increases the survival of retinal ganglion cells in vitro: the role of adenosine A1 receptor. Biochem Biophys Res Commun 430:512–518

    Article  Google Scholar 

  • Radojcic T, Pentreath VW (1979) Invertebrate glia. Prog Neurobiol 12:115–179

    Article  CAS  Google Scholar 

  • Sandeman DC, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sashikumar A, Desai PV (2008) Development of primary cell culture from Scylla serrata. Cytotechnology 56:161–169

    Article  Google Scholar 

  • Schmidt M (1997) Continuous neurogenesis in the olfactory brain of adult shore crabs, Carcinus maenas. Brain Res 762:131–143

    Article  CAS  Google Scholar 

  • Smith CL (1994) Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro. J Neurosci 14:384–398

    CAS  Google Scholar 

  • Srivatsan M, Peretz B (1997) Acetylcholinesterase promotes regeneration of neuritis in cultured adult neurons of Aplysia. Neuroscience 7:921–931

    Article  Google Scholar 

  • Stepanyan R, Hollins B, Brock SE, Mc Lintock TS (2004) Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem Senses 29:179–187

    Article  CAS  Google Scholar 

  • Stowe S (1977) The retina-lamina projection in the crab Leptograpsus variegatus. Cell Tissue Res 185:515–525

    Article  CAS  Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Comparative physiology and evolution of vision in invertebrates, B: invertebrate visual centers and behavior I. In: Autrum H (ed) Comparative physiology and evolution. Springer, New York, pp 1–132

    Google Scholar 

  • Sullivan JM, Sandeman DC, Benton JL, Beltz BS (2007) Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Hist 38:527–542

    Article  CAS  Google Scholar 

  • Toullec JY (1999) Development of primary cell cultures from the penaeid shrimps Penaeus vannamei and P. indicus. J Crust Biol 16:643–649

    Article  Google Scholar 

  • Tsacopoulos M, Poitry-Yamate CL, Poitry S (1997) Ammonium and glutamate released by neurons are signals regulating the nutritive function of a glial cell. J Neurosci 17:2383–2390

    CAS  Google Scholar 

  • Valk VDJ, Brunner D, de Smet K, Svenningsen FA, Honegger P, Knudsen G (2010) Optimization of chemically defined cell culture media replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063

    Article  Google Scholar 

  • Weigel S, Schulte P, Meffert S, Bräunig P, Offenhäusser A (2012) Locust primary neuronal culture for the study of synaptic transmission. J Mol Hist 43:405–419

    Article  Google Scholar 

  • Wiese K (2002) Crustacean experimental systems in neurobiology. Springer, Berlin, pp 3–19

    Book  Google Scholar 

  • Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (1990) Frontiers in crustacean neurobiology. Birkhäuser Verlag, Basel, pp 4–32

    Book  Google Scholar 

  • Xu Y, Ye H, Ma J, Huang H, Wang G (2010) Primary culture and characteristic morphologies of neurons from the cerebral ganglion of the mud crab, Scylla paramamosain in vitro. In Vitro Cell Dev Biol Anim 46:708–717

    Article  Google Scholar 

  • Zanetti L, Ristoratore R, Francone M, Piscopo S, Brown ER (2007) Primary cultures of nervous system cells from the larva of the ascidian Ciona intestinalis. J Neurosci Methods 165:191–197

    Article  CAS  Google Scholar 

  • Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adults Neurogenesis in the Crayfish Brain: Proliferation, Migration, and Possible Origin of Precursor Cells. Dev Neurobiol 69(7):415–435

Download references

Acknowledgments

We thank Sergio Luiz de Carvalho for the advice on the figures. We are grateful to the Multi-user Unit of Image of the Instituto de Biofísica Carlos Chagas Filho of the Universidade Federal do Rio de Janeiro for the use of the Zeiss Axio Imager M2 inverted fluorescent microscope. The authors are also indebted to the Rudolf Barth Electron Microscopy Platform of the Oswaldo Cruz Institute/Fiocruz. This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Allodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajsenzon, I.J.R., de Carvalho, L.A., Biancalana, A. et al. Culture of neural cells of the eyestalk of a mangrove crab is optimized on poly-l-ornithine substrate. Cytotechnology 68, 2193–2206 (2016). https://doi.org/10.1007/s10616-015-9942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9942-1

Keywords

Navigation