Skip to main content
Log in

Insect neuronal cultures: an experimental vehicle for studies of physiology, pharmacology and cell interactions

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

The current status of insect neuronal cultures is discussed and their contribution to our understanding of the insect nervous system is explored. Neuronal cultures have been developed from a wide range of insect species and from all developmental stages. These have been used to study the morphological development of insect neurones and some of the extrinsic factors that affect this process. In addition, they have been used to investigate the physiology of sodium, potassium and calcium channels and the pharmacology of acetylcholine and GABA receptors. Insect neurones have also been grown in culture with muscle and glial cells to study cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert JL, Lingle CJ (1993) Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. J Physiol 463:605–630

    PubMed  CAS  Google Scholar 

  • Amar M, Pichon Y, Inoue I (1991) Micromolar concentrations of veratridine activate sodium channels in embryonic cockroach neurones in culture. Pflügers Arch 417:500–508

    Article  PubMed  CAS  Google Scholar 

  • Angevin V, Salecker I, Vaillant C, Le Guin J, Branchereau P, Tiaho F, van Eyseren I, Pichon Y (2000) Quantitative morphological analysis of embryonic cockroach (Periplaneta americana) brain neurons developing in vitro. Cell Tissue Res 299:129–143

    PubMed  CAS  Google Scholar 

  • Aydar E, Beadle DJ (1999) The pharmacological profile of GABA receptors on cultured insect neurones. J Insect Physiol 45:213–219

    Article  PubMed  CAS  Google Scholar 

  • Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A 191:823–836

    Article  Google Scholar 

  • Beadle DJ,Hicks D (1985) Insect nerve cell culture. In: Gilbert L, Kerkut G (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, Oxford pp 181–211

    Google Scholar 

  • Beadle DJ, Hicks D, Middleton C (1982) Fine structure of Periplaneta americana neurons in long-term culture. J Neurocytol 11:616–626

    Article  Google Scholar 

  • Beadle DJ, Horseman G, Pichon Y, Amar M, Shimahara T (1989) Acetylcholine-activated ion channels in embryonic cockroach neurones growing in culture. J Exp Biol 142:337–355

    Google Scholar 

  • Benquet P, Le Guen J, Dayanithi G, Pichon Y, Tiaho F (1999) Omega-AgaIVA-sensitive (P/Q type) and resistant (R-type) high voltage activated Ba2+ currents in embryonic cockroach brain neurons. J Neurophysiol 82:2284–2293

    PubMed  CAS  Google Scholar 

  • Benquet P, Frere S, Pichon Y, Tiaho F (2000) Properties and development of calcium currents in embryonic cockroach neurons. Neurosci Lett 294:49–52

    Article  PubMed  CAS  Google Scholar 

  • Benquet P, Le Guen J, Pichon Y, Tiaho F (2002) Differential involvement of Ca2+ channels in survival and neurite outgrowth of cultured embryonic cockroach brain neurons. J Neurophysiol 88:1475–1490

    PubMed  CAS  Google Scholar 

  • Benquet P, Pichon Y, Tiaho F (2004) In vitro development of P and R-like calcium currents in insect embryonic brain neurons. Neurosci Lett 365:228–232

    Article  PubMed  CAS  Google Scholar 

  • Bermudez I, Lees G, Botham RP, Beadle DJ (1986) Myogenesis and neuromuscular junction formation in cultures of Periplaneta americana myoblasts and neurones. Dev Biol 116:467–476

    Article  Google Scholar 

  • Bicker G (1996) Transmitter-induced calcium signalling in cultured neurons of the insect brain. J Neurosci Methods 69:33–41

    Article  PubMed  CAS  Google Scholar 

  • Borner J, Puschmann T, Duch C (2006) A steroid hormone affects sodium channel expression in Manduca central neurons. Cell Tissue Res 325:175–187

    Article  PubMed  CAS  Google Scholar 

  • Cardie ML, Lefont F, Bentley D (1989) Selective recognition between embryonic afferent neurones from grasshopper appendages in vitro. Dev Biol 135:221–230

    Article  Google Scholar 

  • Cayre M, Buckingham SD, Strambi A, Strambi C, Sattelle DB (1998) Adult insect mushroom body neurones in primary culture : cell morphology and characterisation of potassium channels. Cell Tissue Res 291:537–547

    Article  PubMed  CAS  Google Scholar 

  • Cayre M, Buckingham SD, Yagodin S, Sattelle DB (1999) Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine and dopamine. J Neurophysiol 81:1–14

    PubMed  CAS  Google Scholar 

  • Cayre M, Strambi C, Strambi A, Charpin P, Ternaux JP (2000) Dual effect of ecdysone on adult cricket mushroom bodies. Eur J Neurosci 12:633–642

    Article  PubMed  CAS  Google Scholar 

  • Cayre M, Malaterre J, Strambi C, Charpin P, Ternaux JP, Strambi A (2001) Short- and long-chain natural polyamines play specific roles in adult cricket neuroblast proliferation and neuron differentiation in vitro. J Neurobiol 48:315–324

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Levi-Montalcini R (1970) Long term cultures of dissociated nerve cells from the embryonic nervous system of the cockroach, Periplaneta americana. Arch Ital Biol 108:503–537

    PubMed  CAS  Google Scholar 

  • Cheung H, Clarke BS, Beadle DJ (1992) A patch-clamp study of the action of a nitromethylene heterocycle insecticide on cockroach neurones growing in vitro. Pestic Sci 34:187–193

    Article  CAS  Google Scholar 

  • Christensen BN, Larmet Y, Shimahara T, Beadle DJ, Pichon Y (1988) Ionic currents in neurones cultured from embryonic cockroach, (Periplaneta americana), brains. J Exp Biol 135:193–214

    PubMed  CAS  Google Scholar 

  • Devaud JM, Quenet B, Gascuel J, Masson C (1994) A morphometric classification of pupal honeybee antennal lobe neurones in culture. Neuroreport 21:545–556

    Google Scholar 

  • Devaud JM, Quenet B, Gascuel J, Masson C (2000) Statistical analysis and parsimonious modelling of dendograms of in vitro neurones. Bull Math Biol 62:657–674

    Article  PubMed  CAS  Google Scholar 

  • Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic acetylcholine receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16

    Article  PubMed  Google Scholar 

  • van Eyersen I, Tiaho F, Le Guen J, Guillet JC, Pichon Y (1998) Effects of nicotinic and muscarinic ligands on embryonic neurones of Periplaneta americana in primary culture: a whole cell clamp study. J Insect Physiol 44:227–240

    Article  Google Scholar 

  • Giles DP, Usherwood PN (1985) Locust nymphal neurones in culture: a new technique for studying the physiology and pharmacology of insect central neurones. Comp Biochem Physiol C 80:53–59

    Article  PubMed  CAS  Google Scholar 

  • Giles DP, Joy RT, Usherwood PN (1978) Growth of isolated locust neurones in culture. J Physiol 276:74P

    PubMed  CAS  Google Scholar 

  • Goldberg F, Grünewald B, Rosenboom H, Menzel R (1999) Nicotinic acetylcholine currents of cultured Kenyon cells. J Physiol 514:759–768

    Article  PubMed  CAS  Google Scholar 

  • Grünewald B (2003) Differential expression of voltage sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J Exp Biol 206:117–129

    Article  PubMed  Google Scholar 

  • Grünewald B, Levine RB (1998) Ecdysteroid control of ionic current development in Manduca sexta motoneurons. J Neurobiol 37:211–223

    Article  PubMed  Google Scholar 

  • Grünewald B, Wersing B, Wüstenburg DG (2004) Learning channels. Cellular physiology of odor processing neurons within the honeybee brain. Acta Biol Hung 55:53–63

    Article  PubMed  Google Scholar 

  • Hamasaka Y, Wegener C, Nässel DR (2005) GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium. J Neurobiol 65:225–240

    Article  PubMed  CAS  Google Scholar 

  • Harrison JB, Leach CA, Katz J, Sattelle DB (1990) Embryonic and adult neurones of the housefly (Musca domestica) in culture. Tissue Cell 22:337–347

    Article  PubMed  CAS  Google Scholar 

  • Hayashi JH, Hildebrand JG (1990) Insect olfactory neurons in vitro: morphological and physiological characterisation of cells from the developing antennal lobe of Manduca sexta. J Neurosci 10:848–859

    PubMed  CAS  Google Scholar 

  • Hoffman KL, Weeks JC (1998) Programmed cell death of an identified motoneuron in vitro: temporal requirements for steroid exposure and protein synthesis. J Neurobiol 35:300–322

    Article  PubMed  CAS  Google Scholar 

  • Horseman BG, Seymour C, Bermudez I, Beadle DJ (1988) The effects of l-glutamate on cultured insect neurones. Neurosci Lett 85:65–70

    Article  PubMed  CAS  Google Scholar 

  • Howes EA, Cheek TR, Smith PJ (1991) Long-term growth in vitro of isolated, fully differentiated neurones from the central nervous system of an adult insect. J Exp Biol 156:591–605

    PubMed  CAS  Google Scholar 

  • Jepson JE, Brown LA, Sattelle DB (2006) The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster. Invert Neurosci 6:33–40

    Article  PubMed  CAS  Google Scholar 

  • Jiang SA, Campusano JM, Su H, O’Dowd DK (2005) Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels. J Neurophysiol 94:491–500

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Sung DK, Park CW, Park HH, Jeon SH, Kang PD, Kwon OY, Lee BH (2005) Brain-derived neurotrophic factor promotes neurite growth and survival of antennal lobe neurons in brain from the silk moth, Bombyx mori in vitro. Zoolog Sci 22:333–342

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff B, Bicker G (1992) Growth properties of larval and adult locust neurons in primary culture. J Comp Neurol 323:411–422

    Article  Google Scholar 

  • Kloppenburg P, Kirchoff BS, Mercer AR (1999) Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ. J Neurophysiol 81:39–48

    PubMed  CAS  Google Scholar 

  • Kraft R, Levine RB, Restifo LL (1998) The steroid hormone, 20-hydroxyecdysone enhances neurite outgrowth of Drosophila mushroom body neurons isolated during metamorphosis. J Neurosci 18:8886–8899

    PubMed  CAS  Google Scholar 

  • Kreisel S, Bicker G (1992) Dissociated neurons of the pupal honeybee brain in cell culture. J Neurocytol 21:545–556

    Article  Google Scholar 

  • Krull CE, Oland LA, Faissner A, Schachner M, Tolbert LP (1994) In vitro analysis of neurite outgrowth indicates a potential role for tenascin-like molecules in the development of insect olfactory glomeruli. J Neurobiol 25:989–1004

    Article  PubMed  CAS  Google Scholar 

  • Kuppers-Munther B, Letzkus JJ, Luer K, Technau G, Schmidt H, Prokop A (2004) A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses. Dev Biol 269:459–478

    Article  PubMed  Google Scholar 

  • Laurent S, Masson C, Jakob I (2002) Whole-cell recording from honeybee olfactory receptor neurons: ionic currents, membrane excitability and odourant response in developing worker bee and drone. Eur J Neurosci 15:1139–1152

    Article  PubMed  Google Scholar 

  • Lee D, Adams ME (2000) Sodium channels in central neurons of the tobacco budworm, Heliothis virescens: basic properties and modification by scorpion toxins. J Insect Physiol 46:499–508

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Su H, O’Dowd DK (2003) GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. J Neurosci 23:4625–4634

    PubMed  CAS  Google Scholar 

  • Lees G, Beadle DJ, Botham RP, Kelly JS (1985) Excitable properties of insect neurons in culture: a developmental study. J Insect Physiol 131:135–143

    Article  Google Scholar 

  • Leudeman R, Levine RB (1996) Neurons and ecdysteroids promote the proliferation of myogenic cells cultured from the developing adult legs of Manduca sexta. Dev Biol 173:51–68

    Article  Google Scholar 

  • Levine RB, Weeks JC (1996) Cell culture approaches to understanding the actions of steroid hormones on the insect nervous system. Dev Neurosci 18:73–86

    Article  PubMed  CAS  Google Scholar 

  • Lucas P, Nagnan-Le Meillour P (1997) Primary cultures of antennal cells of Mamestra brassicae: morphology of cell types and evidence for biosynthesis of pheromone-binding proteins in vitro. Cell Tissue Res 289:375–382

    Article  PubMed  CAS  Google Scholar 

  • Lucas P, Shimahara T (2002) Voltage- and calcium-activated currents in cultured olfactory receptor neurons of male Mamestra brassicae. Chem Senses 27:599–610

    Article  PubMed  CAS  Google Scholar 

  • Matheson SF, Levine RB (1999) Steroid hormone enhancement of neurite outgrowth in identified insect motor neurons involves specific effects on growth cone form and function. J Neurobiol 38:27–45

    Article  PubMed  CAS  Google Scholar 

  • Melville JM, Hoffman KL, Jarrard HE, Weeks JC (2003) Cell culture of mechanoreceptor neurons innervating proleg sensory hairs in Manduca sexta larvae, and co-culture with their target motoneurons. Cell Tissue Res 311:117–130

    Article  PubMed  CAS  Google Scholar 

  • Mercer AR, Hildebrand JG (2002) Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. J Neurophysiol 87:2650–2663

    PubMed  Google Scholar 

  • Mercer AR, Hayashi JH, Hildebrand JG (1995) Modulatory effects of 5-hydroxytryptamine on voltage-activated currents in cultured antennal lobe neurones of the sphinx moth Manduca sexta. J Exp Biol 198:613–627

    PubMed  CAS  Google Scholar 

  • Mercer AR, Kloppenburg P, Hildebrand JG (1996a) Serotonin-induced changes in the excitability of cultured antennal-lobe neurons of the sphinx moth Manduca sexta. J Comp Physiol A 178:21–31

    Article  CAS  Google Scholar 

  • Mercer AR, Kirchof BS, Hildebrand JG (1996b) Enhancement by serotonin of the growth in vitro of antennal lobe neurons of the sphinx moth Manduca sexta. J Neurobiol 29:49–64

    Article  CAS  Google Scholar 

  • Mercer AR, Kloppenburg P, Hildebrand JG (2005) Plateau potentials in developing antennal-lobe neurons of the moth, Manduca sexta. J Neurophysiol 93:1949–1958

    Article  PubMed  CAS  Google Scholar 

  • Newland PL Smith PJS, Howes EA (1993) Regenerating adult cockroach dorsal unpaired median neurones in vitro retain their in vivo membrane characteristics. J Exp Biol 179:113–122

    Google Scholar 

  • O’Dowd DK (1995) Voltage-gated currents and firing properties of embryonic Drosophila neurons grown in a chemically defined medium. J Neurobiol 27:113–126

    Article  PubMed  CAS  Google Scholar 

  • Oland LA, Hayashi JH (1993) Effects of the steroid hormone 20-hydroxyecdysone and prior sensory input on the survival and growth of moth central olfactory neurons in vitro. J Neurobiol 24:1170–1186

    Article  PubMed  CAS  Google Scholar 

  • Oland LA, Oberlander H (1994) Factors that influence the development of cultured neurons from the brain of the moth Manduca sexta. In Vitro Cell Dev Biol Anim 30AL:709–716

    Article  Google Scholar 

  • Oland LA, Tolbert LP (2003) Key interactions between neurons and glial cells during neural development in insects. Annu Rev Entomol 48:89–110

    Article  PubMed  CAS  Google Scholar 

  • Park HH, Park C, Kim KS, Kwon OS, Han SS, Hwang JS, Lee SM, Seong SI, Kang SW, Kim HR, Lee BH (2003) Effects of 20-hydroxyecdysone and serotonin on neurite growth and survival rate of antennal lobe neurons in pupal stage of the silk moth Bombyx mori in vitro. Zoolog Sci 20:111–119

    Article  PubMed  CAS  Google Scholar 

  • Perk CG, Mercer AR (2005) Dopamine modulation of honeybee (Apis mellifera) antennal-lobe neurons. J Neurophysiol 95:1147–1157

    Article  PubMed  Google Scholar 

  • Petri B, Stengl M (1999) Presumptive insect circadian pacemakers in vitro: immunocytochemical characterizaton of pigment-dispersing hormone-immunoreactive neurons Leucophaea maderae. Cell Tissue Res 296:635–643

    Article  PubMed  CAS  Google Scholar 

  • Pinnock RD, Sattelle DB (1987) Dissociation and maintenance in vitro of neurones from adult cockroach (Periplaneta americana)and housefly (Musca domestica). J Neurosci Methods 20:195–202

    Article  PubMed  CAS  Google Scholar 

  • Prugh J, Della Croce K, Levine RB (1992) Effects of the steroid hormone, 20-hydroxyecdysone, on the growth of neurites by identified insect motoneurons in vitro. Dev Biol 154:331–347

    Article  PubMed  CAS  Google Scholar 

  • Rohrbough J, O’Dowd DK, Baines RA, Broadie K (2003) Cellular bases of behavioral plasticity: establishing and modifying synaptic circuits in the Drosophila genetic system. J Neurobiol 54:254–271

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Wu CF (1991) Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts. J Neurosci 11:2135–2150

    PubMed  CAS  Google Scholar 

  • Satoh H, Daido H, Nakamura T (2005) Preliminary analysis of the GABA-induced current in cultured CNS neurons of the cutworm, Spodoptera litura. Neurosci Lett 381:125–130

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Lüer K, Herens W, Technau GM (2000) Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors. J Neurbiol 44:392–413

    Article  CAS  Google Scholar 

  • Seecof RI, Alleaume N, Teplitz RI, Gerson I (1971) Differentiation of neurons and myocytes in cell cultures made from Drosophila gastrulae. Exp Cell Res 69:161–173

    Article  PubMed  CAS  Google Scholar 

  • Shefi O, Golebowicz S, Ben-Jacob E, Ayali A (2005) A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles. J Neurobiol 62:361–368

    Article  PubMed  Google Scholar 

  • Shimahara T, Pichon Y, Lees G, Beadle CA, Beadle DJ (1987) Gamma-amino-butyric acid receptors on cultured cockroach brain neurons. J Exp Biol 131:231–244

    Google Scholar 

  • Smith PJ, Howes EA (1996) Long-term culture of fully differentiated adult insect neurons. J Neurosci Methods 69:113–122

    Article  PubMed  CAS  Google Scholar 

  • Stengl M, Hildebrand JG (1990) Insect olfactory neurons in vitro: morphological and immunocytochemical characterization of male-specific antennal receptor cells from developing antennae of male Manduca sexta. J Neurosci 10:837–847

    PubMed  CAS  Google Scholar 

  • Stockbridge LL, French AS, Sanders EJ (1990) Dissociation and culture of mechanosensory neurons for patch-clamp analysis. Brain Res 523:161–166

    Article  PubMed  CAS  Google Scholar 

  • Streichart LC, Pierce JT, Nelson JA, Weeks JC (1997) Steroid hormones act directly to trigger segment-specific programmed cell death of identified motoneurons in vitro. Dev Biol 183:95–107

    Article  Google Scholar 

  • Su H, O’Dowd DK (2003) Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by α-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors. J Neurosci 23:9246–9253

    PubMed  CAS  Google Scholar 

  • Thomas WE, Jordan FL, Townsel JG (1987) The status of the study of invertebrate neurons in tissue culture—phylum Arthropoda. Comp Biochem Physiol A 87:215–222

    Article  PubMed  CAS  Google Scholar 

  • Torkkeli PH, French AS (1999) Primary culture of antennal mechanoreceptor neurons of Manduca sexta. Cell Tissue Res 297:301–309

    Article  PubMed  CAS  Google Scholar 

  • Torkkeli PH, Widmer A, Meisner S (2005) Expression of muscarinic acetylcholine receptors and acetyltransferase enzyme in cultured antennal sensory neurons and non-neural cells of the developing moth, Manduca sexta. J Neurosci 62:316–329

    CAS  Google Scholar 

  • Tucker ES, Tolbert LP (2003) Reciprocal interactions between olfactory receptor axons and olfactory nerve glia cultured from the developing moth, Manduca sexta. Dev Biol 260:9–30

    Article  PubMed  CAS  Google Scholar 

  • Tucker ES, Oland LA, Tolbert LP (2004) In vitro analyses of interactions between olfactory receptor growth cones and glial cells that mediate axon sorting and glomerulus formation. J Comp Neurol 472:478–495

    Article  PubMed  Google Scholar 

  • Wersing A, Grünewald B (2002) Ionotropic GABA and glutamate receptors in cultured honeybee Kenyon cells. Eur J Neurosci Abs 1:216.11

    Google Scholar 

  • Widmer A, French AS, Torkkeli PH (2001) Acetylcholine receptors on antennal lobe cells of the moth, Manduca sexta. Soc Neurosci Abs 27:392.11

    Google Scholar 

  • Wright ND, Zhong Y (1995) Characterisation of K+ currents and the cAMP-dependent modulation in cultured Drosophila mushroom body neurons identified by lacZ expression. J Neurosci 15:1025–1034

    PubMed  CAS  Google Scholar 

  • Wu C-F, Suzucki N, Poo M-M (1983) Dissociated neurons from normal and mutant Drosophila larval central nervous system in culture. J Neurosci 3:1888–1899

    PubMed  CAS  Google Scholar 

  • Wüstenburg DG, Grünewald B (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A 190:807–821

    Article  Google Scholar 

  • Wüstenburg DG, Boytcheva M, Grünewald B, Byrne JH, Menzel R, Baxter DA (2004) Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J Neurophysiol 92:2589–2603

    Article  Google Scholar 

  • Yao WD, Wu C-F (1999) Auxillary Hyperkinetic beta subunit of K+ channels regulation of firing properties and K+ currents in Drosophila neurons. J Neurophysiol 81:2472–2484

    PubMed  CAS  Google Scholar 

  • Yao WD, Wu C-F (2001) Distinct roles of CAMKII and PKA in regulation of firing patterns and K+ currents in Drosophila neurons. J Neurophysiol 85:1384–1394

    PubMed  CAS  Google Scholar 

  • Yao WD, Rusch J, Poo M, Wu C-F (2000) Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP-pathway mutants. J Neurosci 20:2626–2637

    PubMed  CAS  Google Scholar 

  • Zayas RM, Qazi S, Morton DB, Trimmer BA (2002) Nicotinic acetylcholine receptors are functionally coupled to the nitric oxide/cGMP pathway in insect neurons. J Neurochem 83:421–431

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Stengl M, Franke C, Hildebrand JG, Hatt H (1991) Ionic currents of cultured olfactory neurons from antennae of Manduca sexta. J Neurosci 11:956–965

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Beadle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beadle, D.J. Insect neuronal cultures: an experimental vehicle for studies of physiology, pharmacology and cell interactions. Invert Neurosci 6, 95–103 (2006). https://doi.org/10.1007/s10158-006-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-006-0024-0

Keywords

Navigation