Skip to main content

Advertisement

Log in

Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Molluscan in vitro technology allows the study of the differentiation of isolated cells undergoing experimental manipulations. We have used the immunofluorescence technique and laser scanning microscopy to investigate the organization of muscle proteins (actin, myosin, paramyosin, and twitchin) and the localization of neurotransmitters (serotonin and FMRFamide) in cultured mussel larval cells. Differentiation into muscle and neuron-like cells occurs during the cultivation of mussel cells from premyogenic and prenervous larval stages. Muscle proteins are colocalized in contractile cells through all stages of cultivation. The cultivation of mussel cells on various substrates and the application of integrin receptor blockers suggest that an integrin-dependent mechanism is involved in cell adhesion and differentiation. Dissociated mussel cells aggregate and become self-organized in culture. After 20 days of cultivation, they form colonies in which serotonin- and FMRFamide-immunoreactive cells are located centrally, whereas muscle cells form a contractile network at the periphery. The pattern of thick and thin filaments in cultivated mussel cells changes according to the scenario of muscle arrangement in vivo: initially, a striated pattern of muscle filaments forms but is then replaced by a smooth muscle pattern with a diffuse distribution of muscle proteins, typical of muscles of adult molluscs. Myogenesis in molluscs thus seems to be a highly dynamic and potentially variable process. Such a “flexible” developmental program can be regarded as a prerequisite for the evolution of the wide variety of striated and smooth muscles in larval and adult molluscs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880

    CAS  PubMed  Google Scholar 

  • Altnöder A, Haszprunar G (2008) Larval morphology of the brooding clam Lasaea adansonii (Gmelin, 1791) (Bivalvia, Heterodonta, Galeommatoidea). J Morphol 269:762–774

    Article  PubMed  Google Scholar 

  • Baylies MK, Michelson AM (2001) Invertebrate myogenesis: looking back to the future of muscle development. Curr Opin Genet Dev 11:431–439

    Article  CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    CAS  PubMed  Google Scholar 

  • Bloom L (1993) Genetic and molecular analysis of genes required for axon outgrowth in Caenorhabditis elegans. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Bongiovi ME, Ambron RT, Silverman AJ (1992) The morphological localization and biochemical characterization of a synapsin I-like antigen in the nervous system of Aplysia californica. J Neurosci Res 32:395–406

    Article  CAS  PubMed  Google Scholar 

  • Broadie KS, Bate M (1993) Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J Neurosci 13:144–166

    CAS  PubMed  Google Scholar 

  • Buechner M, Hall DH, Bhatt H, Hedgecock EM (1999) Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev Biol 214:227–241

    Article  CAS  PubMed  Google Scholar 

  • Chin GJ, Vogel SS, Elste AM, Schwartz JH (1990) Characterization of synaptophysin and G proteins in synaptic vesicles and plasma membrane of Aplysia californica. Brain Res 508:265–272

    Article  CAS  PubMed  Google Scholar 

  • Christensen M, Estevez A, Yin X, Fox R, Morrison R, McDonnell M, Gleason Ch, Miller DM III, Strange K (2002) A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33:503–514

    Article  CAS  PubMed  Google Scholar 

  • Cibelli G, Ghirardi M, Onofri F, Casadio A, Benfenati F, Montarolo PG, Vitiello F (1996) Synapsin-like molecules in Aplysia punctata and Helix pomatia: identification and distribution in the nervous system and during the formation of synaptic contacts in vitro. Eur J Neurosci 8:2530–2543

    Article  CAS  Google Scholar 

  • Costa ML, Escaleira RC, Rodrigues VB, Manasfi M, Mermelstein CS (2002) Some distinctive features of zebrafish myogenesis based on unexpected distributions of the muscle cytoskeletal proteins actin, myosin, desmin, alpha-actinin, troponin and titin. Mech Dev 116:95–104

    Article  CAS  PubMed  Google Scholar 

  • Costa ML, Escaleira RC, Manasfi M, Souza LF, Mermelstein CS (2003) Cytoskeletal and cellular adhesion proteins in zebrafish (Danio rerio) myogenesis. Braz J Med Biol Res 36:1117–1120

    Article  CAS  PubMed  Google Scholar 

  • Cragg SM, Crisp DJ (1991) The biology of scallop larvae. In: Shumway SE (ed) Biology. Ecology and aquaculture of scallops. Elsevier, Amsterdam, pp 75–132

    Google Scholar 

  • Croll RP, Voronezhskaya EE (1995) Early FMRFamide-like immunoreactive cells in gastropod neurogenesis. Acta Biol Hung 46:295–303

    CAS  PubMed  Google Scholar 

  • DeCamilli P, Vitadello M, Canevini MP, Zanoni R, Jahn R, Gorio A (1988) The synaptic vesicle proteins synapsin I and synaptophysin (protein P38) are concentrated both in efferent and afferent nerve endings of the skeletal muscle. J Neurosci 8:1625–1631

    CAS  Google Scholar 

  • Dyachuk VA, Odintsova NA (2009) Development of the larval muscle system in the mussel Mytilus trossulus (Mollusca, Bivalvia). Dev Growth Differ 51:69–79

    CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Epstein HF, Casey DL, Ortiz I (1993) Myosin and paramyosin of Caenorhabditis elegans embryos assemble into nascent structures distinct from thick filaments and multi-filament assemblages. J Cell Biol 122:845–858

    Article  CAS  PubMed  Google Scholar 

  • Erceg S, Laínez S, Ronaghi M, Stojkovic P, Pérez-Aragó MA, Moreno-Manzano V, Moreno-Palanques R, Planells-Cases R, Stojkovic M (2008) Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS ONE 3:e2122

    Article  PubMed  CAS  Google Scholar 

  • Erceg S, Ronaghi M, Stojkovic P (2009) Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27:78–87

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R (2007) In vivo rise to endothelial and smooth muscle-like cells and form vascular networks vascular progenitor cells isolated from human embryonic stem cells give. Circ Res 101:286–294

    Article  CAS  PubMed  Google Scholar 

  • Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108:3181–3188

    CAS  PubMed  Google Scholar 

  • Gruenbaum LM, Carew TJ (1999) Growth factor modulation of substrate-specific morphological patterns in Aplysia bag cell neurons. Learn Mem 6:292–306

    CAS  PubMed  Google Scholar 

  • Haba G, Kamali HM, Tiede DM (1975) Myogenesis of avian striated muscle in vitro: role of collagen in myofiber formation. Proc Natl Acad Sci USA 72:2729–2732

    Article  PubMed  Google Scholar 

  • Hall JC, Greenspan RJ (1979) Genetic analysis of Drosophila neurobiology. Annu Rev Genet 13:127–195

    Article  CAS  PubMed  Google Scholar 

  • Haszprunar G, Wanninger A (2000) Molluscan muscle systems in development and evolution. J Zool Syst Evol Res 38:157–163

    Article  Google Scholar 

  • Hauschka SD, Konigsberg IR (1966) The influence of collagen on the development of muscle clones. Proc Natl Acad Sci USA 55:119–126

    Article  CAS  PubMed  Google Scholar 

  • Jones KU, Senft A (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79

    CAS  PubMed  Google Scholar 

  • Kaneko H, Kawahara Y, Okamoto M, Dan-Sonkawa M (1997) Study on the nature of starfish larval muscle cells in vitro. Zool Sci 14:287–296

    Article  Google Scholar 

  • Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria- Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375

    Article  CAS  PubMed  Google Scholar 

  • Ladurner P, Rieger R, Baguna J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 226:231–241

    Article  CAS  PubMed  Google Scholar 

  • Lafrenie RM, Yamada KM (1998) Integrins and matrix molecules in salivary gland cell adhesion, signaling, and gene expression. Ann N Y Acad Sci 15:842–848

    Google Scholar 

  • Lakonishok M, Muschler J, Horwitz AF (1992) The α5β1 integrin associates with a dystrophin-containing lattice during muscle development. Dev Biol 152:209–220

    Article  CAS  PubMed  Google Scholar 

  • Lee TK, Leung AA Jr, Brezden BL, Lukowiak K, Syed NI (2002) Specificity of synapse formation between Lymnaea heart motor neuron and muscle fiber is maintained in vitro in a soma–muscle configuration. Synapse 46:66–71

    Article  CAS  PubMed  Google Scholar 

  • Levine R, Elfvin M, Dewey MM, Walcot B (1976) Paramyosin in invertebrate muscles. II. Content in relation to structure and function. J Cell Biol 71:273–279

    Article  CAS  PubMed  Google Scholar 

  • Luedeman R, Levine RB (1996) Neurons and ecdysteroids promote the proliferation of myogenic cells cultured from the developing adult legs of Manduca sexta. Dev Biol 173:51–68

    Article  CAS  PubMed  Google Scholar 

  • Lynn DE, Oberlande H, Porchebon P (1998) Tissues and cells in culture. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11C. Wiley-Liss, New-York, pp 1119–1141

    Google Scholar 

  • McDougall C, Chen W-C, Shimeld SM, Ferrier D (2006) The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polycheates. Front Zool 3:16 (doi:10.1186/1742-9994-3-16)

    Article  PubMed  Google Scholar 

  • Montgomery M, Messner MC, Kirk MD (2002) Arterial cells and CNS sheath cells from Aplysia californica produce factors that enhance neurite outgrowth in co-cultured neurons. Invert Neurosci 4:141–155

    Article  PubMed  Google Scholar 

  • Naganuma T, Degnan BM, Horikoshi K, Morse DE (1994) Myogenesis in primary cell cultures from larvae of the abalone, Haliotis rufescens. Mol Marine Biol Biotechnol 3:131–140

    CAS  PubMed  Google Scholar 

  • Odintsova NA (2009) Stem cells of marine invertebrates: regulation of proliferation and induction of differentiation in vitro. Cell Tissue Biol 3:403–408

    Article  Google Scholar 

  • Odintsova NA, Khomenko AV (1991) Primary cell culture from embryos of the Japanese scallop Mizuchopecten yessoensis (Bivalvia). Cytotechnology 6:49–54

    Article  CAS  PubMed  Google Scholar 

  • Odintsova NA, Plotnikov SV, Karpenko AA (2000) Isolation and partial characterization of myogenic cells from mussel larvae in vitro. Tissue Cell 32:417–424

    Article  CAS  PubMed  Google Scholar 

  • Odintsova N, Dyachuk V, Kiselev K, Shelud’ko N (2006) Expression of thick filament proteins during ontogenesis of the mussel Mytilus trossulus (Mollusca: Bivalvia). Comp Biochem Physiol B Biochem Mol Biol 144:238–244

    Article  CAS  PubMed  Google Scholar 

  • Page LR (1997) Ontogenetic torsion and protoconch form in the archaeogastropod Haliotis kamtschatkana: evolutionary implications. Acta Zool 78:227–245

    Article  Google Scholar 

  • Peter R, Gschwentner R, Schürmann W, Rieger RM, Ladurner P (2004) The significance of stem cells in free-living flatworms: one common source for all cells in the adult. J Appl Biomed 2:21–35

    Google Scholar 

  • Pfister D, De Mulder K, Hartenstein V, Kuales G, Borgonie G, Marx F, Morris J, Ladurner P (2008) Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev Biol 319:146–159

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov SV, Karpenko AA, Odintsova NA (2003) Comparative characteristic of Mytilus muscle cells developed in vitro and in vivo. J Exp Zool [A] 298:77–85

    Article  CAS  Google Scholar 

  • Rieger RM, Ladurner P (2003) The significance of muscle cells for the origin of mesoderm in Bilateria. Integr Comp Biol 43:47–54

    Article  Google Scholar 

  • Rinkevich B (2005) Marine invertebrate cell cultures: new millennium trends. Marine Biotechnol 7:429–439

    Article  CAS  Google Scholar 

  • Ritzenthaler S, Suzuk E, Chiba A (2000) Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 3:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101

    Article  CAS  PubMed  Google Scholar 

  • Royuela M, Fraile B, Cervera M, Paniagua R (1997) Immunocytochemical electron microscopic study and Western blot analysis of myosin, paramyosin and miniparamyosin in the striated muscle of the fruit fly Drosophila melanogaster and in obliquely striated and smooth muscles of the earthworm Eisenia foetida. J Muscle Res Cell Motil 18:169–177

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  PubMed  Google Scholar 

  • Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420

    Article  CAS  PubMed  Google Scholar 

  • Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2006) How to build a myofibril. J Muscle Res Cell Motil 26:343–354

    Article  Google Scholar 

  • Sarin V, Gaffin RD, Meininger GA, Muthuchamy M(2005) Arginine-glycine-aspartic acid (RGD)-containing peptides inhibit the force production of mouse papillary muscle bundles via alpha 5 beta 1 integrin. J Physiol (Lond) 564:603–617

    Article  CAS  Google Scholar 

  • Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, Zhang R, Goldhaber JI (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Luer K, Hevers W, Technau GM (2000) Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors. J Neurobiol 44:392–413

    Article  CAS  PubMed  Google Scholar 

  • Scott LH, Kevin HH, Jeffrey BT (2008) Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 86:72–127

    Article  CAS  Google Scholar 

  • Seecof RL, Allèaume N, Teplitz RL, Gerson I (1971) Differentiation of neurons and myocytes in cell cultures made from Drosophila gastrulae. Exp Cell Res 69:161–173

    Article  CAS  PubMed  Google Scholar 

  • Seecof RL, Teplitz RL, Gerson I, Ikeda K, Donady JJ (1972) Differentiation of neuromuscular junctions in cultures of embryonic Drosophila cells. Proc Nat Acad Sci USA 69:66–570

    Article  Google Scholar 

  • Shelud’ko NS, Tuturova KF, Permyakova TV, Plotnikov SV, Orlova AA (1999) A novel thick filament protein in smooth muscles of bivalve molluscs. Comp Biochem Physiol B Biochem Mol Biol 122:277–285

    Article  Google Scholar 

  • Stewart MT, Mousley A, Koubková B, Sebelová S, Marks NJ, Halton DW (2003) Development in vitro of the neuromusculature of two strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus. Int J Parasitol 33:413–424

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Morrison R (2006) In vitro culture of C. elegans somatic cells. Methods Mol Biol 351:265-273

    PubMed  Google Scholar 

  • Szent-Gyorgyi AG, Cohen C, Kendrick-Jones J (1971) Paramyosin and filaments of molluscan “catch” muscle. J Mol Biol 56:239–258

    Article  CAS  PubMed  Google Scholar 

  • Vibert P, Edelstein SM, Castellani L, Elliott BW (1993) Mini-Titins in striated and smooth molluscan muscles—structure, location and immunological cross-reactivity. J Muscle Res Cell Motil 14:598–607

    Article  CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Nezlin LP, Odintsova NA, Plummer JT, Croll RP (2008) Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127:97–110

    Article  Google Scholar 

  • Winkleman L (1976) Comparative studies of paramyosins. Comp Biochem Physiol B Biochem Mol Biol 55:391–397

    Article  Google Scholar 

  • Wu CH-F, Susuki N, Poo M (1983) Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture. J Neurosci 3:1888–1899

    CAS  PubMed  Google Scholar 

  • Zaldibar B, Cancio I, Marigómez I (2004) Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Cell Tissue Res 318:395–402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Elena Voronezhskaya (Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia) for help with the immunocytochemistry and for valuable discussions and criticisms during the preparation of the manuscript and to Mrs. Irina Barsegova for her help in editing the manuscript. The donation of thick filament proteins by Dr. N.S. Shelud’ko and Dr. O.S. Matusovsky (Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok) is gratefully acknowledged. The authors are particularly grateful to the valuable comments of anonymous reviewers who helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly A. Odintsova.

Additional information

This study was supported in part by the Far Eastern Branch of Russian Academy of Sciences (grants NT-08-016-04, 09-III-B-06-252, 09-II-SB-06-001, 09-I-P22-04), RFBR (grants 09-04-98529-r_vostok_а and 09-04-01326-а) and President Grant to V.A. Dyachuk (MK-2425.2010.4).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 917 kb)

(AVI 1813 kb)

(AVI 1686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odintsova, N.A., Dyachuk, V.A. & Nezlin, L.P. Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia). Cell Tissue Res 339, 625–637 (2010). https://doi.org/10.1007/s00441-009-0918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0918-3

Keywords

Navigation