Skip to main content

Functions of Invertebrate Glia

  • Chapter
Nervous Systems in Invertebrates

Abstract

Invertebrate glial cells exhibit a vast array of structural and functional specializations. The cells vary markedly at different sites and at different stages of development in individual species, and amongst the different groups. In a number of situations, particular glial properties have become well developed and have been studied in detail. They include mechanical support and protection of neurones, formation of occluding permeability barriers, wrapping of axons to speed up impulse conduction, removal of neurones, uptake and release of transmitters, supply and exchange of nutrients and metabolites with the neurones, and guidance of migrating neurones. The various functions are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott NJ (1970) Absence of blood-brain barrier in a crustacean, Carcinus maenas L. Nature 225: 291–293.

    PubMed  CAS  Google Scholar 

  • Abbott NJ (1972) Access of ferritin to the interstitial space of Carcinus brain from intracerabral blood vessels. Tissue Cell 4: 99–104.

    PubMed  CAS  Google Scholar 

  • Abbott NO, Treherne JE (1977) Homeostasis of the brain microenvironment: A comparative account. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, New York, pp 481–510.

    Google Scholar 

  • Abbott NJ, Bundgaard M, Cserr HF (1982) Experimental study of the blood-brain barrier in the cuttlefish, Sepia officinalis L. J Physiol 326: 43–44.

    Google Scholar 

  • Abbott NJ, Bundaggard M, Cserr H (1985) Tightness of the blood-brain barrier and evidence for brain interstitial fluid flow in the cuttlefish, Sepia officinalis. J Physiol 368: 213–226.

    PubMed  CAS  Google Scholar 

  • Abbott NJ, Pichon Y, Lane NJ (1977) Primitive forms of potassium homeostasis: observations on crustacean central nervous system with implications for vertebrate brain. Expt Eye Res Suppl 25: 259–271.

    CAS  Google Scholar 

  • Ashhurst DE, Costin NM (1971) Insect mucosubstances of the central nervous system. Histochem J 3: 297–310.

    PubMed  CAS  Google Scholar 

  • Baskin DG (1971a) The supporting role of neuroglia in Nereis (Annelida, Polychaeta). Anat Rec 169: 273–274.

    Google Scholar 

  • Baskin DG (1971b) Fine structure, functional organization and supportive role of neuroglia in Nereis. Tissue Cell 3: 579–588.

    PubMed  CAS  Google Scholar 

  • Baylor DA, Nicholls JG (1969) Changes in extracellular potassium concentration produced by neural activity in the central nervous system of the leech. J Physiol 293: 555–569.

    Google Scholar 

  • Becker HW (1965) The number of neurons, glial and perineurium cells in an insect ganglion. Experientia 21: 719–720.

    Google Scholar 

  • Bittner GD (1981) Trophic interactions of CNS giant axons in crayfish. Comp Biochem Physiol 68A: 299–306.

    Google Scholar 

  • Bittner GD Mann DW (1976) Differential survival of isolated portions of crayfish axons. Cell Tissue Res 169: 301–311.

    PubMed  CAS  Google Scholar 

  • Borovyagin VL, Salanki 3, Zs.-Nagy I (1972) Ultrastructural alterations in the cerebral ganglion of Anodonta cygnea L. (Mollusca, pelecypoda) induced by transection of the cerebrovisceral connective. Acta Biol Hung 23: 31–45.

    CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. W.H. Freeman and co., San Francisco, London.

    Google Scholar 

  • Bullock TH, Orkand R Grinnel A (1977) Introduction to nervous systems. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Campos-Ortega JA (1974) Autoradiographic localization of 3H- γ-aminobutyric acid uptake in the lamina ganglionaris of Musca and Drosophila. Z Zellforsch Mikrosk anat 147: 415–431.

    PubMed  CAS  Google Scholar 

  • Chapman DM (1974) Cniderian histology. Section 1. In: Muscatin L, Lenhoff HM (eds) Coelenterate biology. Reviews and new perspectives. Academic Press, New York.

    Google Scholar 

  • Chitwood BG, Chitwood MH (1950) Introduction to nematology. University Park Press, Baltimore, London.

    Google Scholar 

  • Cobb LS (1987) Neurobiology of the Echinodermata. (This volume)

    Google Scholar 

  • Coggeshall RE (1965) A fine structural analysis of the ventral nerve cord and associated sheath of Lumbricus terrestris L. J Comp Neurol 125: 393–438.

    PubMed  CAS  Google Scholar 

  • Coggeshall RE (1966) The ganglion-connective junction in the central nervous system of the leech Hirudo medicinalis. J Morphol 119: 417–424.

    PubMed  CAS  Google Scholar 

  • Coggeshall RE, Fawcett DW (1964) The fine structure of the central nervous system of the leech Hirudo medicinalis. J Neurophysiol 27: 229–289.

    PubMed  CAS  Google Scholar 

  • Coles JA, Orkand RK (1985) Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina. J Physiol 362: 415–435.

    PubMed  CAS  Google Scholar 

  • Coles JA, Tsacopoulos M (1979) Potassium activity in photorecptors, glial cells and extracellular space in the drone retina: Changes during photostimulation. J Physiol 290: 525–549.

    PubMed  CAS  Google Scholar 

  • Coles JA, Tsacopoulos M (1981) Ionic and possible metabolic interactions between sensory neurons and glial cells in the retina of the honeybee drone. J Exp Biol 95: 75–92.

    PubMed  CAS  Google Scholar 

  • Colonnier M, Tremblay JP, McLennan H (1979) Synaptic contacts on glial cells in the abdominal ganglion of Aplysia californica. J Comp Neurol 188: 391–400.

    PubMed  CAS  Google Scholar 

  • Cooke JD, Quastel DMJ (1973) The specific effect of potassium on transmitter release by motor nerve terminals and its inhibition by calcium. J Physiol 228: 435–458.

    PubMed  CAS  Google Scholar 

  • Cuadras J (1985) A mechanism for macromolecular transfer from glial to neuron cell body in crayfish. Experientia 41: 1590–1591.

    CAS  Google Scholar 

  • Cuadras J (1986) Neuron-glia comunicatory structures in crustaceans. Comp Biochem Physiol 83A: 9–12.

    Google Scholar 

  • Cuadras J, Marti-Subirana A (1985) Glial cells in abdominal ganglia of crayfish. Acta Zool (Stockh) 66: 217–228.

    Google Scholar 

  • Cuadras J, Martin G, Czternasty G, Bruner 3 (1985) Gap-like junctions between neuron cell bodies and glial cells of the crayfish. Brain Res 326: 149–151.

    PubMed  CAS  Google Scholar 

  • Deitmer JW, Schlue WR (1981) Measurements of the intracellular potassium activity of Retzius cells in the leech central nervous system. J Exp Biol 91: 87–101.

    CAS  Google Scholar 

  • Drummond GI, Eng DY, McIntosh CA (1971) Ribonucleoside 2’, 3’-cyclic phosphate diesterase activity and cerebroside levels in vertebrate and invertebrate nerve. Brain Res 28: 153–163.

    PubMed  CAS  Google Scholar 

  • Dyakonova TL (1972) Activation of RNA synthesis in glial satellite cells during electrical activity of neuron. Tsitologiya 14: 1147–1155.

    CAS  Google Scholar 

  • Dyakonova TL, Veprintzev BN (1969) Particularities of structural and functional organization and metabolic activity of neurons of Lymnaea. Acad Sci USSR Dept Biophys, Puschino, USSR.

    Google Scholar 

  • Edwards JS (1980) Neuronal guidance and pathfinding in the developing sensory nervous system of insects. In: Locke M, Smith DS (eds) Insect biology in the future -VBW 80. Academic Press, London, pp 667–683.

    Google Scholar 

  • Eldefrawi ME, O’Brien RD (1967) Permeability of the adbominal nerve cord of the American cockroach, Periplaneta americana (L.), to aliphatic alcohols. J Insect Physiol 13: 391–398.

    Google Scholar 

  • Elliott EJ, Muller KJ (1981) Long-term survival of glial segments during nerve regeneration in the leech. Brain Res 218: 99–113.

    Google Scholar 

  • Elliott EJ, Muller KJ (1982) Synapses between neurons regenerate accurately after destruction of ensheathing glial cells in the leech. Science 215: 1260–1262.

    Google Scholar 

  • Evans PD (1974) An autoradiographical study of the localization of the uptake of glutamate by the peripheral nerves of the crab, Carcinus maenas (L.). J Cell Sci 14: 315–367.

    Google Scholar 

  • Evans PD, Reale V, Villegas J (1985) The role of cyclic nucleotides in modulation of the membrane potential of the Schwann cell of squid giant nerve fibre. J Physiol 363: 151–167.

    PubMed  CAS  Google Scholar 

  • Evêquoz V, Stadelmann A, Tsacopoulos M (1983) The effect of light on glycogen turnover in the retina of the intact honeybee drone (Apis mellifera). J Comp Physiol 150: 69–75.

    Google Scholar 

  • Faeder IR, Salpeter MM (1970) Glutamate uptake by a stimulated insect nerve muscle preparation. J Cell Biol 46: 300–307.

    PubMed  CAS  Google Scholar 

  • Fahrenbach WH (1976) The brain of the horseshoe crab (Limulus polyphemus). I. Neuroglia. Tissue Cell 8: 395–410.

    CAS  Google Scholar 

  • Gainer H (1978) Intercellular transfer of proteins from glial cells to axons. Trends Neurosci 1: 93–96.

    Google Scholar 

  • Gainer H, Tasaki I, Lasek RJ (1977) Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid axons. J Cell Biol 74: 524–530.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR (1983a) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 335: 353–374.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR (1983b) Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335: 393–426.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR, Nicholson C (1983) Changes of extracellular potassium activity induced by electric current ghrough brain tissue in the rat. J Physiol 335: 375–392.

    PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR, Coles JA, Tsacopoulos M (1981) Clearance of extracellular potasium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res 209: 452–457.

    PubMed  CAS  Google Scholar 

  • Globus A, Lux HD, Schubert P (1973) Transfer of amino acids between neuroglia cells and neurons in the leech ganglion. Exp Neurol 40: 104–113.

    PubMed  CAS  Google Scholar 

  • Goldschmidt R (1910) Das Nervensystem von Ascaris lumbricoides and megalocephala, III. Fest Hertwigs 2: 253–354.

    Google Scholar 

  • Goldstein RS, Weiss KR, Schwartz JH (1982) Intraneuronal injection of horseradish peroxidase lables glial cells associated with the axons of the giant metacerabral neurons of Aplysia. J Neurosci 2: 1567–1577.

    PubMed  CAS  Google Scholar 

  • Golgi C (1903) Opera Omnia, Vols I and II. U. Hoepli, Milan.

    Google Scholar 

  • Gould RM, Pant H, Gainer H, Tytell M (1983) Phospholipid synthesis in the squid giant axon: incorporation of lipid precursors. J Neurochem 40: 1293–1299.

    PubMed  CAS  Google Scholar 

  • Gray EG (1969) Electron microscopy of the glio-vacular organization of the brain of Octopus. Phil Trans Soc B 255: 13–32.

    Google Scholar 

  • Gray EG, Guillery RW (1963) An electron microscope study of the ventral nerve cord of the leech. Z. Zellforsch Mikrosk Anat 60: 826–849.

    PubMed  CAS  Google Scholar 

  • Griffiths G (1979) Transport of glial acid phosphatase by endoplasmic reticulum into damaged axons. J Cell Sci 36: 361–389.

    PubMed  CAS  Google Scholar 

  • Gunther J (1979) Impulse conduction in the myelinated giant fibres of the earthworm. Structure and function of the dorsal nodes in the median giant fibre. J Comp Neurol 168: 505–532.

    Google Scholar 

  • Gymer A, Edwards JS (1967) The development of the insect nervous system, I. An analysis of postembryonic growth in the terminal ganglion of Acheta domesticus. J Morphol 123: 191–198.

    PubMed  CAS  Google Scholar 

  • Hama K (1959) Some observations on the fine structure of the giant nerve fibers of the earthworm, Eisenia foetida. J Biophys Biochem Cytol 6: 61–66.

    PubMed  CAS  Google Scholar 

  • Hertz L, Nissen C (1976) Diferences between leech and mammalian nervous systems in metabolic reaction to K+ as an indication of differences in potassium homeostasis mechanisms. Brain Res 110: 182–188.

    PubMed  CAS  Google Scholar 

  • Heumann R, Villegas J, Hertzfeld DW (1981) Acetylcholine synthesis in the Schwann cell and axon in the giant nerve fibre of the squid. J Neurochem 36: 765–768.

    PubMed  CAS  Google Scholar 

  • Heuser JE, Doggenweiler CF (1966) The fine structural organization of nerve fibers, sheaths, and glial cells in the prawn, Palaemonetes vulgaris. J Cell Biol 30: 381–403.

    PubMed  CAS  Google Scholar 

  • Holmgren E (1900) Weitere Milleilungen uber die ‘Saftkanalchen’ der Nervenzellen. Anat Anz 18: 290–296.

    Google Scholar 

  • Holmgren E (1901) Beitrage zur Morphologie der Zelle. I. Nervenzellen. Anat Hefte 18: 269–325.

    Google Scholar 

  • Horridge GA, Mackay B (1962) Naked axons and symmetrical synapses in coelenterates. Quart J Microsc Sci 103: 531–541.

    Google Scholar 

  • Hoyle G (1986) Glial cells of an insect ganglion. J Comp Neurol 246: 85–103.

    PubMed  CAS  Google Scholar 

  • Hoyle G, Williams M, Phillips C (1986) Functional morphology of insect neuronal cell-surface/glial contacts: the trophospongium. J Comp Neurol 246: 113–128.

    PubMed  CAS  Google Scholar 

  • Kai-Kai MA, Pentreath VW (1981a) The structure, distribution and quantitative relationships of the glia in the abdominal ganglia of the horse leech, Haemopis sanguisuga. J Comp Neurol 202: 193–210.

    PubMed  CAS  Google Scholar 

  • Kai-Kai MA, Pentreath VM (1981b) High resolution analysis of [3H]2-deoxyglucose incorporation into neurons and glial cells in invertebrate ganglia: histological processing of nervous tissue for selective marking of glycogen. J Neurocytol 10: 693–708.

    PubMed  CAS  Google Scholar 

  • Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc B 168: 1–21.

    CAS  Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Ergebn Physiol 57: 1–90.

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG (1976) From neuron to brain. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 27: 290–320.

    PubMed  CAS  Google Scholar 

  • Lane NJ (1972) Fine structure of a lepidopteran nervous system and its accessibility to peroxidase and lanthanum. Z Zell forsch Mikrosk Anat 131: 205–222.

    CAS  Google Scholar 

  • Lane NJ (1979) Intramembranous particles in the form of ridges, bracelets or assemblies in arthropod tissues. Tissue Cell 11s 1–18.

    PubMed  CAS  Google Scholar 

  • Lane NJ (1981) Invertebrate neuroglia; junctional structure and development. J Exp Biol 95: 7–33.

    Google Scholar 

  • Lane NJ, Abbott NJ (1975) The organization of the nervous system in the crayfish Procambarus clarkii, with emphasis on the blood-brain interface. Cell Tissue Res 156: 173–187.

    PubMed  CAS  Google Scholar 

  • Lane NJ, Treherne JE (1980) Junctional organization of arthropod neuroglia. In: Locke M, Smith DS (eds) Insect biology in the future VBW 80. Academic Press, London, New York, pp 765–795.

    Google Scholar 

  • Lasek RJ, Tytell MA (1981) Macromolecular transfer from glia to the axon. J Exp Biol 95: 153–165.

    PubMed  CAS  Google Scholar 

  • Lasek RJ, Gainer H, Barker JL (1977) Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein transfer hypothesis. J Cell Biol 74: 501–523.

    PubMed  CAS  Google Scholar 

  • Lasek RJ Gainer H, Przybylski RJ (1974) Transfer of newly synthesized proteins from Schwann cells to the squid giant axon. Proc Nat Acad Sci USA 71: 1188–1192.

    PubMed  CAS  Google Scholar 

  • Lieberman EM, Villegas J, Villegas GM (1981) The nature of the membrane potential of glial cells associated with the medial giant axon of the crayfish. Neurosci 6: 261–271.

    CAS  Google Scholar 

  • Lopresti V, Macagno ER, Levinthal C (1973) Structure and development of neuronal connections in isogenic organisms: cellular interactions in the development of the optic lamina of Daphnia. Proc Nat Acad Sci USA 70: 433–437.

    PubMed  CAS  Google Scholar 

  • Morgese VJ, Elliott EJ, Muller KJ (1983) Microglial movement to sites of nerve lesion in the leech CNS. Brain Res 272: 166–170.

    PubMed  CAS  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the leech. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Nicaise G (1967) Description d’un “systeme glio-interstitiel” chez Glossodoris (Gasteropode: Opisthobranche). CR Acad Sci Paris D 246: 2793–2795.

    Google Scholar 

  • Nicaise G (1973) The gliointerstitial system of molluscs. Int Rev Cytol 34: 251–332.

    CAS  Google Scholar 

  • Nicholson C (1980) Dynamics of brain cell microenvironment. Neurosci Res Prog Bull 18(2): 177–322.

    Google Scholar 

  • Okamura N, Stoskopf M, Yamaguchi H, Kishimoto Y (1985) Lipid composition of the nervous system of earthworms (Lumbricus terrestris). J Neurochem 45: 1875–1879.

    PubMed  CAS  Google Scholar 

  • Oksche A (ed) (1980) Neuroglia I. Hand Mikrosk Anat des Menschen Vol IV, part 10. Springer Verlag, Berlin.

    Google Scholar 

  • Orkand P, Kravitz EA (1971) Localization of the sites of γ-amino butyric acid (GABA) uptake in lobster nerve-muscle preparations. J Cell Biol 49: 75–89.

    PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol 19: 788–806.

    Google Scholar 

  • Orkand PM, Bracho H, Orkand RK (1973) Glial metabolism: alteration by potassium levels comparable to those during neural activity. Brain Res 55: 467–471.

    PubMed  CAS  Google Scholar 

  • Pentreath VW (1982) Potassium signalling of metabolic interactions between neurons and glial cells. Trends Neurosci 5: 339–345.

    CAS  Google Scholar 

  • Pentreath VW, Cobb JLS (1972) Neurobiology of echinodermata. Biol Rev 47: 363–392.

    PubMed  CAS  Google Scholar 

  • Pentreath VW, Cottrell GA (1970) The blood supply to the central nervous system of Helix pomatia. Z Zellforsch Mikrosk Anat 111: 160–178.

    PubMed  CAS  Google Scholar 

  • Pentreath VW, Kai-Kai MA (1982) Significance of the potassium signal from neurons to glial cells. Nature 295: 59–61.

    PubMed  CAS  Google Scholar 

  • Pentreath VW, Radojcic T, Seal LH, Winstanley, EK (1985) The glial cells and glia-neuron relations in the buccal ganglia of Planorbis corneus (L.): cytological, qualitaive and quantitative changes during growth and ageing. Phil Trans R Soc Lond B 307: 399–455.

    CAS  Google Scholar 

  • Pentreath VW, Pennington A3, Seal LH, Swift K (1986a) Modulation by neuronal signals of energy substrate in the glial cells of leech segmental ganglia. In: Althaus H, Seifert W (eds) Glial-neuronal communication in development and regeneration. Plenum, New York (in press).

    Google Scholar 

  • Pentreath VW, Seal LH, Morrison JH, Magistretti PJ (1986b) Transmitter mediated regulation of energy metabolism in nervous tissue at the cellular level. Neurochem Int. 9: 1–10.

    PubMed  CAS  Google Scholar 

  • Perrachia C (1981) Direct communication between axons and sheath glial cells in crayfish. Nature 290: 597–598.

    Google Scholar 

  • Pipa RL (1967) Insect neurometamorphosis. III. Nerve cord shortening in a moth, Galleria mellonella (L.), may be accomplished by humoral potentiation of neuroglial motility. J Exp Zool 164: 47–60.

    PubMed  CAS  Google Scholar 

  • Pipa RL (1973) Proliferation, movement and regression of neurons during the postembryonic development in insects. In: Young D (ed) Developmental neurobiology of arthropods. Cambridge University Press, London, pp 105–129.

    Google Scholar 

  • Radojcic T, Pentreath VW (1979) Invertebrate glia. Prog Neurobiol 12: 115–179.

    PubMed  CAS  Google Scholar 

  • Radojcic T, Pentreath VW (1981) Quantitative analysis of neuron-glial relationships in the buccal ganglion of Planorbis: life constancy in the absence of changes in functional output. Brain Res 211: 468–475.

    PubMed  CAS  Google Scholar 

  • Rakic P (1974) Intrinsic and extrinsic factors influencing the shape of neurons and their assembly into neuronal circuits. In: Seeman P, Brown GM (eds) Frontiers in neurology and neuroscience research. Toronto Press, Toronto pp 112–132.

    Google Scholar 

  • Ramón Y Cajal S, Sanchez D (1915) Contribution al conocimiento de los centros nerviosos de los insectos, Parte 1, Retina y centros opticos. Trab Lab Invest Biol Univ Madrid 13: 1–168.

    Google Scholar 

  • Reale V, Evans PD, Villegas J (1986) Octopaminergic modulation of the membrane potential of the Schwann cell of the squid giant nerve fibre. J Exp Biol 121: 421–443.

    PubMed  CAS  Google Scholar 

  • Reinecke M (1975) Die Gliazellen der Cerebralganglien von Helix pomatia L. (Gastropoda: Pulmonata). I. Ultrastruktur und organisation. Zoomorphol 82: 105–136.

    Google Scholar 

  • Reinecke M (1976) The glial cells of the cerebral ganglia of Helix pomatia L. (Gastropoda, pulmonata). II. Uptake of ferritin and glutamate. Cell Tissue Res 169: 361–382.

    PubMed  CAS  Google Scholar 

  • Roots BI (1978) A phylogenetic approach to the anatomy of glia. In: Schoffeniels E, Franck B, Hertz L, Tower LDB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp 45–54.

    Google Scholar 

  • Roots BI (1981) Comparative studies on glial markers. J Exp Biol 95: 167–180.

    PubMed  CAS  Google Scholar 

  • Saint-Marie RL, Carlson SD (1983) The fine structure of glia in the lamina ganglionaris of the housefly, Musca domestica L. J Neurocytol 12: 243–275.

    PubMed  CAS  Google Scholar 

  • Saint-Marie RL, Carlson SD (1985) Interneuronal and glial-neuronal gap junctions in the lamina ganglionaris of the compound eye of the housefly, Musca domestica. Cell Tissue Res 241: 43–52.

    PubMed  CAS  Google Scholar 

  • Saint-Marie RL, Carlson SD, Chi C (1984) The glial cells of insects. In: King RC, Akaai H (eds) Insect ultrastructure, Vol. 2 Plenum Press, New York, pp 435–475.

    Google Scholar 

  • Salpeter MM, Faeder IR (1971) The role of sheath cells in glutamate uptake by insect nerve muscle preparations. Prog Brain Res 34: 103–114.

    Google Scholar 

  • Saubermann AJ, Scheid VL (1985) Elemental composition and water content of neuron and glial cells in the central neuvous system of the North American medicinal leech (Macrobdella decora). J Neurochem 44: 825–834.

    PubMed  CAS  Google Scholar 

  • Schacher SM (1981) The role of support cells in the growth and differentiation of neurones in the abdominal ganglion of Aplysia. J Exp Biol 95: 205–214.

    PubMed  CAS  Google Scholar 

  • Schlue WR, Deitmer JW (1980) Extracellular potassium in neuropile and nerve cell body region of the leech central nervous system. J Exp Biol 87: 23–43.

    PubMed  CAS  Google Scholar 

  • Schlue WR, Walz W (1984) Electrophysiology of neuropile glial cells in the central nervous system of the leech. A model system for potassium homeostasis in the brain. Cell Neurobiol 5: 143–175.

    CAS  Google Scholar 

  • Schofield PK, Treherne JE (1985) Octopamine reduces potassium permeability of the glia that form the insect blood-brain barrier. Brain Res 360: 344–348.

    PubMed  CAS  Google Scholar 

  • Seal LH, Pentreath VW (1985) Modulation of glial glycogen metabolism by 5-hydroxytryptamine in leech segmental ganglia. Neurochem Int 7: 1037–1045.

    PubMed  CAS  Google Scholar 

  • Shimomura K, Hajura S, Ki PF, Kishimoto Y (1983) An unusual glucocere- broside in the crustacean nervous system. Science 220: 1392–1393.

    PubMed  CAS  Google Scholar 

  • Skaer HL, Lane NJ (1974) Junctional complexes, perineurial and glial- axonal relationships, and the ensheathing structures of the insect nervous system; a comparative study using conventional and freeze-cleaving techniques. Tissue Cell 6: 695–718.

    PubMed  CAS  Google Scholar 

  • Smith DO (1983) Extracellular potassium levels and axon excitability during repetitive action potentials in crayfish. J Physiol 336: 143–157.

    PubMed  CAS  Google Scholar 

  • Smith PJS, Leech CA, Treherne JE (1984) Glial repair in an insect central nervous system: effects of selective glial disruption. J Neurosci 4: 2698–2711.

    PubMed  CAS  Google Scholar 

  • Smith PJS, Howes EA, Leech CA, Treherne JE (1986) Haemocyte involvement in the repair of the insect central nervous system after selective glial disruption. Cell Tissue Res 243: 367–374.

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer Verlag, Berlin.

    Google Scholar 

  • Swales LS, Lane NJ (1985) Embryonic development of glial cells and their junctions in the locust central nervous system. J Neurosci 5: 117–128.

    PubMed  CAS  Google Scholar 

  • Taylor DP, Dyer KA, Newburgh RW (1976) Cyclic nucleotides in neuronal and glial-enriched fractions from the nerve cord of Manduca sexta. J Insect Physiol 22: 1303–1304.

    PubMed  CAS  Google Scholar 

  • Treherne JE (1960) The nutrition of the central nervous system in the cockroach, Periplaneta americana L. The exchange and metabolism of sugars. J Exp Biol 27: 513–533.

    Google Scholar 

  • Treherne JE, Schofield PK (1978) A model for extracellular sodium regulation in the central nervous system of an insect, Periplaneta americana. J Exp Biol 77: 251–254.

    CAS  Google Scholar 

  • Treherne JE, Schofield PK (1981) Mechanisms of ionic homeostasis in the central nervous system of an insect. J Exp Biol 95: 61–73.

    PubMed  CAS  Google Scholar 

  • Treherne JE, Schofield PK, Lane NJ (1982) Physiological and ultrastructural evidence for an extracellular anion matrix in the central nervous system of an insect (Periplaneta americana). Brain Res 247: 255–267.

    PubMed  CAS  Google Scholar 

  • Treherne JE, Harrison JB, Treherne JM, Lane NJ (1984) Glial repair in an insect central nervous system: effects of surgical lesioning. J Neurosci 4: 2689–2697.

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Evêquoz V (1980) L’effet de la stimulation photique sur le metabolisme du glycogene intraretinien. Klin Mbl Augenheilk 176: 519–521.

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Poitry A, Borsellino A (1981) Diffusion and comsumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness. J Gen Physiol 77: 601–628.

    PubMed  CAS  Google Scholar 

  • Turner JD, Cottrell GA (1978) Cellular uptake of amines and amino acids in the central ganglion of a gastropod mollusc Planorbis corneus: an autoradiographic study. J Neurocytol 7: 759–776.

    PubMed  CAS  Google Scholar 

  • Tytell M, Lasek RJ (1984) Glial polypeptides transferred into the squid giant axon. Brain Res 324: 223–232.

    PubMed  CAS  Google Scholar 

  • Varon SS, Somjen GG (1979) Neuron-glia interactions. Neurosci Res Prog Bull 17(1):6–239.

    Google Scholar 

  • Viancour TA, Bittner GD, Ballinger ML (1981) Selective transfer of Lucifer Yellow CH from axoplasm to adaxonal glia. Nature 293: 65–67.

    PubMed  CAS  Google Scholar 

  • Villegas GM, Villegas J (1974) Acetylcholinesterase localization in the giant nerve fibre of the squid. J Ultrastruct Res 46: 149–156.

    PubMed  CAS  Google Scholar 

  • Villegas J (1974) Effects of actylcholine and carbamylcholine on the axon and Schwann cell electric potentials in the squid nerve fibre. J Physiol 242: 647–659.

    PubMed  CAS  Google Scholar 

  • Villegas J (1975) Characterization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fibre. J Physiol 249: 679–689.

    PubMed  CAS  Google Scholar 

  • Villegas J (1978) Cholinergic systems in axon-Schwann cell interactions. Trends Neurosci 1s 66–69.

    CAS  Google Scholar 

  • Villegas J (1981) Axon/Schwann-cell relationships in the giant nerve fibre of the squid. J Exp Biol 95: 135–151.

    PubMed  CAS  Google Scholar 

  • Villegas J (1984) Axon-Schwann cell relationship. Curr Topics Membr Transport 22: 547–571.

    Google Scholar 

  • Villegas J, 3enden DJ (1979) Acetylcholine content of the Schwann cell and axon in the giant nerve fibre of the squid. J Neurochem 32: 761–766.

    PubMed  CAS  Google Scholar 

  • Villegas J, Villegas GM (1978) Functional mechanisms in axon-Schwann cell relationships in the squid nerve fiber. Acta Cientif Venez 29: 291–294.

    CAS  Google Scholar 

  • Walz W (1982) Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system. J Neurosci Res 7: 71–79.

    PubMed  CAS  Google Scholar 

  • Walz W, Hertz L (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Pro Neurobiol 20: 133–183.

    CAS  Google Scholar 

  • Walz W, Schlue WR (1982a) External ions and membrane potential of leech neuropile glial cells. Brain Res 239: 119–138.

    PubMed  CAS  Google Scholar 

  • Walz W, Schlue WR (1982b) Ionic mechanism of a hyperpolarizing 5-hydroxytryptamine effect on leech neuropile glial cells. Brain Res 250: 111–121.

    PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1959) The histology of the nervous system of an insect, Rhodnius prolixus (Hemiptera). II. The central ganglia. Quart J Microsc Sci 100: 299–313.

    Google Scholar 

  • Wigglesworth VB (1960) The nutrition of the central nervous system in the cockrocah Periplaneta americana L. The role of perineurium and glial cells in the mobilization of reserves. J Exp Biol 37: 500–512.

    CAS  Google Scholar 

  • Winstanley EK, Pentreath VW (1985) Lipofuscin accumulation and its prevention by Vitamin E in nervous tissue: quantitative analysis using snail ganglia as a simple model system. Mech Ageing Develop 29: 299–307.

    CAS  Google Scholar 

  • Wolfe DE, Nicholls JG (1967) Uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the leech central nervous system. J Neurophysiol 30: 1593–1609.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Pentreath, V.W. (1987). Functions of Invertebrate Glia. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics