Skip to main content
Log in

Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Adult neurogenesis is a characteristic feature of the olfactory pathways of decapod crustaceans. In crayfish and clawed lobsters, adult-born neurons are the progeny of precursor cells with glial characteristics located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate during S and G2 stages of the cell cycle along glial fibers to lateral (cluster 10) and medial (cluster 9) proliferation zones. Here, they divide (M phase) producing offspring that differentiate into olfactory interneurons. The complete lineage of cells producing neurons in these animals, therefore, is arranged along the migratory stream according to cell cycle stage. We have exploited this model to examine the influence of environmental and endogenous factors on adult neurogenesis. We find that increased levels of serotonin upregulate neuronal production, as does maintaining animals in an enriched (versus deprived) environment or augmenting their diet with omega-3 fatty acids; increased levels of nitric oxide, on the other hand, decrease the rate of neurogenesis. The features of the neurogenic niche and migratory streams, and the fact that these continue to function in vitro, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ache BW, Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48:417–430

    PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1998) Essential Cell Biology, Chpts 17 and 18. Garland Publishing, Inc. NY

    Google Scholar 

  • Allodi S, Bressan CM, Carvalho SL, Cavalcante LA (2006) Regionally specific distribution of the binding of anti-glutamate synthetase and anti-S100 antibodies and of Datura stratonium lectin in glial domains of the optic lobe of the giant prawn. Glia 53:612–620

    PubMed  Google Scholar 

  • Arbas EA, Humphreys CJ, Ache BW (1988) Morphology and physiological properties of interneurons in the olfactory midbrain of the crayfish. J Comp Physiol A 164:231–241

    PubMed  CAS  Google Scholar 

  • Beck Jr RD, Wasserfall C, Ha GK, Cushman JD, Huang Z, Atkinson MA, Petitto JM (2005) Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Res 1041:223–230

    PubMed  CAS  Google Scholar 

  • Beites CL, Kawauchi S, Crocker CE, Calof A (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306:309–316

    PubMed  CAS  Google Scholar 

  • Beltz BS, Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Struct Dev 32:175–188

    Google Scholar 

  • Beltz BS, Benton JL, Sullivan JM (2001) Transient uptake of serotonin by newborn olfactory projection neurons may mediate their survival. PNAS 98:12730–12735

    PubMed  CAS  Google Scholar 

  • Beltz BS, Benton J, Sandeman DC (2005a) Adult Neurogenesis in the Crustacean Brain: Comparative Cell Cycle Dynamics and Regulatory Controls. Soc Neurosci Abstr 31:366.2

    Google Scholar 

  • Beltz BS, Benton JL, Genco MC, Mellon DeF, Sullivan JM, Sandeman DC (2005b) Regulation of adult neurogenesis in decapod crustaceans. Bull MDIBL 44:74–77

    Google Scholar 

  • Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Let 415:154–158

    CAS  Google Scholar 

  • Benton J, Beltz BS (2001a) Effects of embryonic serotonin depletion on olfactory interneurons in lobsters. J Neurobiol 46:193–205

    PubMed  CAS  Google Scholar 

  • Benton JL, Beltz BS (2001b) Serotonin, nitric oxide and neuronal proliferation in the olfactory pathway of lobsters. Soc Neurosci Abstr 27:622.20

    Google Scholar 

  • Benton JL, Beltz BS (2007a) An in vitro approach sheds light on serotonergic influences on adult neurogenesis in Homarus americanus. MDIBL Bull 46:in press

  • Benton JL, Beltz BS (2007b) Nitric oxide in the crustacean brain: Regulation of life-long neurogenesis and stabilization of developing olfactory glomeruli. Dev Dynamics, submitted

  • Benton JL, Goy MF, Beltz BS (2003) Nitric oxide affects serotonin levels and neuronal proliferation in the lobster olfactory pathway. Soc Neurosci Abstr 29:562.13

    Google Scholar 

  • Benton JL, Beltz BS (2005) Nitric oxide in the embryonic lobster brain: Regulation of neurogenesis and stabilization of olfactory glomeruli. Soc Neurosci Abstr 31:830.21

    Google Scholar 

  • Blaustein DN, Derby CD, Simmons RB, Beall AC (1988) Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers. J Crust Biol 8:493–519

    Google Scholar 

  • Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24:7623–7631

    PubMed  CAS  Google Scholar 

  • Bourre JM, Dumont O, Piciotti M, Clement M, Chaudiere J, Bonneil M, Nalbone G, Lafont H, Pascal G, Durand G (1991) Essentiality of omega-3 fatty acids for brain structure and function. World Rev Nutr Diet 66:103–117

    PubMed  CAS  Google Scholar 

  • Breithaupt T, Eger P (2002) Urine makes the difference: chemical communication in fighting crayfish made visible. J Exp Biol 205:1221–1231

    PubMed  Google Scholar 

  • Byrd CA, Brunjes PC (2001) Neurogenesis in the olfactory bulb of adult zebrafish. Neuroscience 105:793–801

    PubMed  CAS  Google Scholar 

  • Campos LS (2005) β1 integrins and neural stem cells: making sense of the extracellular environment. Bioessays 27:698–707

    PubMed  CAS  Google Scholar 

  • Carlisle DB (1957) On the hormonal inhibition of molting in decapod Crustacea. II. Terminal anecdysis in crabs. JMBA 36:291–307

    Google Scholar 

  • Chen G, Du Rajkowska GF, Seraji-Bozorgzad N, Manji HK (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75:1729–1734

    PubMed  CAS  Google Scholar 

  • Cooper RA, Uzmann JR (1980) Ecology of juvenile and adult Homarus. In: Cobb JS, Phillips BF (eds) The Biology and Management of Lobsters, vol 2. Academic Press, New York, pp 97–142

    Google Scholar 

  • Cvetic CA, Walter JC (2006) Getting a grip on licensing: mechanism of stable Mcm2-7 loading onto replication origins. Mol Cell 21:143–144

    PubMed  CAS  Google Scholar 

  • Derby CD (2000) Learning from spiny lobsters about chemosensory coding of mixtures. Physiol Behav 69:203–209

    PubMed  CAS  Google Scholar 

  • Derby CD, Cate HS, Steullet P, Harrison PJH (2003) Comparison of turnover in the olfactory organ of early juvenile stage and adult Caribbean spiny lobsters. Arthropod Struct Dev 31:297–311

    PubMed  Google Scholar 

  • Doetsch F (2003a) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    PubMed  CAS  Google Scholar 

  • Doetsch F (2003b) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134

    PubMed  CAS  Google Scholar 

  • Farbman AI (1992) Cell biology of olfaction. Cambridge University Press, Cambridge

    Google Scholar 

  • Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci 7:1233–1241

    PubMed  CAS  Google Scholar 

  • Garcia-Verdugo JM, Ferron S, Flames N, Collada L, Desfilis E, Font E (2002) The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 57:765–775

    PubMed  Google Scholar 

  • Goergen E, Bagay LA, Rehm K, Benton JL, Beltz BS (2002) Circadian control of neurogenesis. J Neurobiol 53:90–95

    PubMed  Google Scholar 

  • Graziadei PPC, Monti-Graziadei GA (1978) Continuous nerve cell renewal in the olfactory system. In: Jacobson M (ed), Development of sensory systems, vol 9. Handbook of sensory physiology. Springer, New York, pp55–83

    Google Scholar 

  • Grünert U, Ache BW (1988) Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster, Panulirus argus. Cell Tissue Res 251:95–103

    Google Scholar 

  • Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in Crustacea. Microsc Res Tech 22:325–335

    PubMed  CAS  Google Scholar 

  • Hansen A, Schmidt M (2001) Neurogenesis in the central olfactory pathway of the adult shore crab Carcinus maenas is controlled by sensory afferents. J Comp Neurol 441:223–233

    PubMed  CAS  Google Scholar 

  • Hansen A, Schmidt M (2004) Influence of season and environment on adult neurogenesis in the central olfactory pathway of the shore crab, Carcinus maenas. Brain Res 1025:85–97

    PubMed  CAS  Google Scholar 

  • Hanström B (1925) The olfactory centres in crustaceans. J Comp Neurol 38:221–250

    Google Scholar 

  • Harbige LS (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341

    PubMed  CAS  Google Scholar 

  • Harrison PJ, Cate HS, Swanson ES, Derby CD (2001) Postembryonic proliferation in the spiny lobster antennular epithelium: rate of genesis of olfactory receptor neurons is dependent on moult stage. J Neurobiol 47:51–66

    PubMed  CAS  Google Scholar 

  • Hartnoll RG (1963) The biology of Manx spider crabs. Proc Zool Lond 141:423–469

    Google Scholar 

  • Hartnoll RG (1982) Growth. In: Abele LG (ed) The Biology of Crustacea, vol 2. Academic Press, Orlando, pp111–195

    Google Scholar 

  • Harzsch S (2003) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? Arthropod Struct Dev 32:17–37

    PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton J, Beltz B (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485

    PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    PubMed  CAS  Google Scholar 

  • Hinsch GW (1972) Some factors controlling reproduction in the spider crab, Libinia emarginata. Biol Bull 143:358–366

    PubMed  CAS  Google Scholar 

  • Kempermann G (2002) Regulation of adult hippocampal neurogenesis –implications for novel theories of major depression. Bipolar Disorders 4:17–33

    PubMed  Google Scholar 

  • Kempermann G (2005) Adult neurogenesis: stem cells and neuronal development in the adult brain. Oxford University Press, New York

    Google Scholar 

  • Kempermann G, Gage FH (1999) New nerve cells for the adult brain. Sci Am 280:48–53

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. TINS 27:447–452

    PubMed  CAS  Google Scholar 

  • Kim GY (2004) The process of establishing a social relationship influences the rate of neuronal proliferation and survival in juvenile lobsters, Homarus americanus. Wellesley College, thesis

  • Kim SK, Chang MY, Yu IT, Kim JH, Lee SH, Lee YS, Son H (2004) Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 89:324–336

    PubMed  CAS  Google Scholar 

  • Langworthy K, Helluy S, Benton J, Beltz B (1997) Amines and peptides in the brain of Homarus americanus: immunocytochemical localization patterns and implications for brain function. Cell Tissue Res 288:191–206

    PubMed  CAS  Google Scholar 

  • Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307

    PubMed  CAS  Google Scholar 

  • Linser PJ, Trapido-Rosenthal HG, Orona E (1997) Glutamine synthetase is a glial-specific marker in the olfactory regions of the lobster (Panulirus argus) nervous system. Glia 20:275–283

    PubMed  CAS  Google Scholar 

  • Lledo PM, Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28:248–254

    PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    PubMed  CAS  Google Scholar 

  • Ma DK, Ming GL, Song H (2005) Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol 15:514–520

    PubMed  CAS  Google Scholar 

  • Maslov AY, Barone TA, Plunkett RJ, Pruitt SC (2004) Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 24:1726–1733

    PubMed  CAS  Google Scholar 

  • Mellon DEF, Alones V (1994) Identification of three classes of multiglomerular, broad-spectrum neurons in the crayfish olfactory midbrain by correlated patterns of electrical activity and dendritic arborization. J Comp Physiol A 177:55–71

    Google Scholar 

  • Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188

    PubMed  Google Scholar 

  • Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 96:11619–11624

    Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    PubMed  CAS  Google Scholar 

  • Palmer TD (2002) Adult neurogenesis and the vascular Nietzsche. Neuron 34:856–858

    PubMed  CAS  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    PubMed  CAS  Google Scholar 

  • Sandeman D, Beltz B, Sandeman R (1995) Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. J Comp Neurol 352:263–279

    PubMed  CAS  Google Scholar 

  • Sandeman DC, Denburg J (1976) The central projections of chemoreceptor axons in the crayfish revealed by axoplasmic transport. Brain Res 115:492–496

    PubMed  CAS  Google Scholar 

  • Sandeman D, Scholtz G (1995) Ground plans, evolutionary changes, and homologies in decapod crustacean brains. In: Breitbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhauser Verlag, Basel, pp 329–347

    Google Scholar 

  • Sandeman DC, Mellon De F (2002) Olfactory centers in the brain of freshwater crayfish. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin-Heidelberg, pp 386–404

    Google Scholar 

  • Sandeman DC, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

    Google Scholar 

  • Sandeman R, Clarke D, Sandeman D, Manly M (1998) Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J Neurosci 18:6195–6206

    PubMed  CAS  Google Scholar 

  • Sandeman R, Sandeman D (2000) “Impoverished” and “enriched” living conditions influence the proliferation and survival of neurons in crayfish brain. J Neurobiol 45:215–226

    PubMed  CAS  Google Scholar 

  • Sandeman RE, Sandeman DC (1996) Pre- and postembryonic development, growth and turnover of olfactory receptor neurones in crayfish antennules. J Exp Biol 199:2409–2418

    PubMed  Google Scholar 

  • Sandeman RE, Sandeman DC (2003) Development, growth and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277

    PubMed  Google Scholar 

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299

    Google Scholar 

  • Schmidt M (1997) Continuous neurogenesis in the olfactory brain of adult shore crabs, Carcinus maenas. Brain Res 762:131–143

    PubMed  CAS  Google Scholar 

  • Schmidt M (2001) Neuronal differentiation and long-term survival of newly generated cells in the olfactory midbrain of the adult spiny lobster, Panulirus argus. J Neurobiol 48:181–203

    PubMed  CAS  Google Scholar 

  • Schmidt M (2007a) The olfactory pathway of decapod crustaceans – An invertebrate model for life-long neurogenesis. Chem Senses 32:365–384

    PubMed  Google Scholar 

  • Schmidt M (2007b) Identification of putative neuroblasts at the base of adult neurogenesis in the olfactory midbrain of the spiny lobster, Panulirus argus. J Comp Neurol 503:64–84

    PubMed  Google Scholar 

  • Schmidt M, Ache BW (1997) Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res 287:541–562

    PubMed  Google Scholar 

  • Schmidt M, Ache BW (1996) Processing of antennular input in the brain of the spiny lobster, Panulirus argus. II. The olfactory pathway. J Comp Physiol A 178:579–604

    Google Scholar 

  • Schmidt M, Demuth S (1998) Neurogenesis in the central olfactory pathway of adult decapod crustaceans. Ann NY Acad Sci 30:277–280

    Google Scholar 

  • Schmidt M, Harzsch S (1999) Comparative analysis of neurogenesis in the central olfactory pathway of adult decapod crustaceans by in vivo BrdU-labelling. Biol Bull 196:127–136

    Google Scholar 

  • Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378

    PubMed  Google Scholar 

  • Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    PubMed  CAS  Google Scholar 

  • Song CK, Johnstone LM, Schmidt M, Derby CD, Edwards DH (2007) Social domination increases neuronal survival in the brain of juvenile crayfish Procambarus clarkii. J Exp Biol 210:1311–1324

    PubMed  Google Scholar 

  • Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    PubMed  CAS  Google Scholar 

  • Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814

    PubMed  Google Scholar 

  • Steullet P, Cate HS, Derby CD (2000) A spatio-temporal wave of turnover and functional maturation of olfactory receptor neurons in the spiny lobster, Panulirus argus. J Neurosci 20:3282–3294

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common designs, uncommon origins? Curr Opin Neurobiol 9:634–639

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz (2001a) Development and connectivity of olfactory pathways in the brain of the lobster Homarus americanus. J Comp Neurol 441:23–43

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2001b) Neural pathways connecting the deutocerebrum and the lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2004) Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470:25–38

    PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005a) Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata. Eur J Neurosci 22:2397–2402

    Article  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005b) Integration and segregation of inputs to higher-order neuropils of the crayfish brain. J Comp Neurol 481:118–126

    PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005c) Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. J Neurobiol 65:157–170

    PubMed  Google Scholar 

  • Sullivan JM, Benton JL, Beltz BS (2000) Serotonin depletion in vivo inhibits the branching of olfactory projection neurons in the lobster deutocerebrum. J Neurosci 20:7716–7721

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Sandeman DC, Beltz BS (2005) Characterization of a putative stem/progenitor cell niche in the brain of an adult invertebrate, the crayfish Procambarus clarkii. Soc Neurosci Abstr 31:366.4

    Google Scholar 

  • Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584

    PubMed  Google Scholar 

  • Tierney AJ, Thompson CS, Dunham DW (1984) Site of pheromone reception in the crayfish Orconectes propinquus. J Crust Biol 4:554–559

    Google Scholar 

  • Van der Meeren GI, Sandeman DC, Benton JL, Beltz BS (2007) Neurogenesis and exploratory behavior in juvenile lobsters maintained in different environments. 8th International Congress of Neuroethology, in press

  • Wachowiak M, Ache BW (1994) Morphology and physiology of multiglomerular olfactory projection neurons in the spiny lobster. J Comp Physiol A 175:35–48

    Google Scholar 

  • Wachowiak M, Diebel CE, Ache BW (1996) Functional organization of olfactory processing in the accessory lobe of the spiny lobster. J Comp Physiol A 178:211–226

    Google Scholar 

  • Wahle RA, Fogarty MJ (2006) Growth and development: understanding and modeling growth variability in lobsters Chapter 1. In: Phillips B (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell Publishing Inc., Oxford, pp 1–44

    Google Scholar 

  • Wildt M, Goergen EM, Benton JL, Sandeman DC, Beltz BS (2004) Regulation of serotonin levels by multiple light-entrainable endogenous rhythms. J Exp Biol 207:3765–3774

    PubMed  CAS  Google Scholar 

  • Wolff T (1978) The maximum size of lobsters (Homarus) (Decapoda, Nephropidae). Crustaceana 34:1–14

    Article  Google Scholar 

  • Yasuda A, Yasuda-Kamatani Y, Nozaki M, Nakajima T (2004) Identification of GYRKPPFNGSIFamide (crustacean-SIFamide) in the crayfish Procambarus clarkii by topological mass spectrometry analysis. Gen Comp Endrocrinol 135:391–400

    CAS  Google Scholar 

  • Yasuda-Kamatani Y, Yasuda A (2006) Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of the crayfish Procambarus clarkii. J Comp Neurol 496:135–147

    PubMed  CAS  Google Scholar 

  • Yehuda S, Rabinovitz S, Mostofsky DI (1998) Modulation of learning and neuronal membrane composition in the rat by essential fatty acid preparation: time-course analysis. Neurochem Res 23:627–634

    PubMed  CAS  Google Scholar 

  • Zulandt Schneider RA, Schneider RWS, Moore PA (1999) Recognition of dominance status by chemoreception in the red swamp crayfish Procambarus clarkii. J Chem Ecol 25:781–794

    Google Scholar 

Download references

Acknowledgements

This study was supported by NIH R01 MH67157, NSF IBN 0344448 and The Maren Foundation, Mount Desert Island Biological Laboratory. We thank P. Carey and G. Quinan for technical assistance, E. Buchner and Y. Yasuda for kindly providing antibodies, and S. Allodi for discussions concerning the properties of decapod glia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara S. Beltz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, J.M., Sandeman, D.C., Benton, J.L. et al. Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Hist 38, 527–542 (2007). https://doi.org/10.1007/s10735-007-9112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9112-7

Keywords

Navigation