Skip to main content
Log in

The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin–Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on the spectral analysis of wind velocity and air temperature fluctuations, it is shown that, when both the gradient Richardson number, Ri, and the flux Richardson number, Rf, exceed a ‘critical value’ of about 0.20–0.25, the inertial subrange associated with the Richardson–Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in this supercritical regime, but this is non-Kolmogorov turbulence, and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Richardson–Kolmogorov energy cascade weakens; therefore, the applicability of local Monin–Obukhov similarity theory in stable conditions is limited by the inequalities RiRi cr and RfRf cr. However, it is found that Rf cr  =  0.20–0.25 is a primary threshold for applicability. Applying this prerequisite shows that the data follow classical Monin–Obukhov local z-less predictions after the irrelevant cases (turbulence without the Richardson–Kolmogorov cascade) have been filtered out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometerol 3: 417–432

    Article  Google Scholar 

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559: 117–149

    Article  Google Scholar 

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010a) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J R Meteorol Soc 136(649B): 927–943

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010b) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11(1): 87–104

    Article  Google Scholar 

  • Arya SPS (1972) The critical condition for the maintenance of turbulence in stratified flows. Q J R Meteorol Soc 98(416): 264–273

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63(11): 3045–3054

    Article  Google Scholar 

  • Baas P, de Roode SR, Lenderink G (2008) The scaling behaviour of a turbulent kinetic energy closure model for stably stratified conditions. Boundary-Layer Meteorol 127(1): 17–36

    Article  Google Scholar 

  • Banta RM, Pichugina YL, Brewer WA (2006) Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci 63(11): 2700–2719

    Article  Google Scholar 

  • Banta RM, Mahrt L, Vickers D, Sun J, Balsley BB, Pichugina YL, Williams EJ (2007) The very stable boundary layer on nights with weak low-level jets. J Atmos Sci 64(9): 3068–3090

    Article  Google Scholar 

  • Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa J-F, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119: 473–500

    Article  Google Scholar 

  • Baumert H, Peters H (2004) Turbulence closure, steady state, and collapse into waves. J Phys Oceanogr 34(2): 505–512

    Article  Google Scholar 

  • Baumert HZ, Peters H (2009) Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear. Ocean Sci 5: 47–58

    Article  Google Scholar 

  • Businger JA (1988) A Note on the Businger-Dyer profiles. Boundary-Layer Meteorol 42: 145–151

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Busch NE (1973) The surface boundary layer (Part I). Boundary-Layer Meteorol 4: 213–240

    Article  Google Scholar 

  • Busch NE, Panofsky HA (1968) Recent spectra of atmospheric turbulence. Q J R Meteorol Soc 94(400): 132–148

    Article  Google Scholar 

  • Canuto V, Cheng Y, Howard A, Esau I (2008) Stably stratified flows: a model with no Ri(cr). J Atmos Sci 65(7): 2437–2447

    Article  Google Scholar 

  • Caughey SJ (1977) Boundary-layer turbulence spectra in stable conditions. Boundary-Layer Meteorol 11(1): 3–14

    Article  Google Scholar 

  • Cheng Y, Brutsaert W (2005) Flux–profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114(3): 519–538

    Article  Google Scholar 

  • Derbyshire SH (1990) Nieuwstadt’s stable boundary layer revisited. Q J R Meteorol Soc 116: 127–158

    Article  Google Scholar 

  • Dias NL, Brutsaert W, Wesely ML (1995) Z-less stratification under stable conditions. Boundary-Layer Meteorol 75(1-2): 175–187

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Boundary-Layer Meteorol 7: 363–372

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant flux layer. Q J R Meteorol Soc 96: 715–721

    Article  Google Scholar 

  • Ellison T (1957) Turbulent transport of heat and momentum from an infinite rough plane. J Fluid Mech 2: 456–466

    Article  Google Scholar 

  • Ferrero E, Quan L, Massone D (2011) Turbulence in the stable boundary layer at higher Richardson numbers. Boundary-Layer Meteorol 139(2): 225–240

    Article  Google Scholar 

  • Forrer J, Rotach MW (1997) On the turbulence structure in the stable boundary layer over the greenland ice sheet. Boundary-Layer Meteorol 85: 111–136

    Article  Google Scholar 

  • Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence. Atmos Sci Lett 8: 65–69

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK 316 pp

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2): 201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007a) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124(3): 315–333

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007b) On the turbulent Prandtl number in the stable atmospheric boundary layer. Boundary-Layer Meteorol 125(2): 329–341

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2008) Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta Geophys 56(1): 142–166

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2012) Outlier problem in evaluating similarity functions in the stable atmospheric boundary layer. Boundary-Layer Meteorol 144(2): 137–155. doi:10.1007/s10546-012-9714-9

    Article  Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an antarctic ice sheet. Boundary-Layer Meteorol 91(2): 165–186

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Hong J (2010) Note on turbulence statistics in z-less stratification. Asia-Pacific J Atmos Sci 46(1): 113–117. doi:10.1007/s13143-010-0011-6

    Article  Google Scholar 

  • Hong J, Kim J, Ishikawa H, Ma Y (2010) Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform. Biogeosciences 7: 1271–1278

    Article  Google Scholar 

  • Howard LN (1961) Note on a paper of John W. Miles. J Fluid Mech 10: 509–512

    Article  Google Scholar 

  • Howell JF, Sun J (1999) Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90: 495–520

    Article  Google Scholar 

  • Itsweire EC, Koseff JR, Briggs DA, Ferziger JH (1993) Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J Phys Oceanogr 23(7): 1508–1522

    Article  Google Scholar 

  • Jimenez MA, Cuxart J (2005) Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: Range of applicability. Boundary Layer Meteorol 115(2): 241–261

    Article  Google Scholar 

  • Jordan RE, Andreas EL, Makshtas AP (1999) Heat budget of snow-covered sea ice at North Pole 4. J Geophys Res 104(C4): 7785–7806

    Article  Google Scholar 

  • Kaimal JC (1973) Turbulence spectra, length scales and structure parameters in the stable surface layer. Boundary-Layer Meteorol 4: 289–309

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurements. Oxford University Press, New York/Oxford, 289 pp

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417): 563–589

    Article  Google Scholar 

  • King JC (1990) Some measurements of turbulence over an Antarctic shelf. Q J R Meteorol Soc 116: 379–400

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130(601): 2087–2103

    Article  Google Scholar 

  • Kondo J, Kanechika O, Yasuda N (1978) Heat and momentum transfers under strong stability in the atmospheric surface layer. J Atmos Sci 35(6): 1012–1021

    Article  Google Scholar 

  • Kouznetsov RD, Zilitinkevich SS (2010) On the velocity gradient in the stably stratified sheared flows. Part 2: Observations and models.. Boundary-Layer Meteorol 135(3): 513–517

    Article  Google Scholar 

  • Mahrt L (2007) The influence of nonstationarity on the turbulent flux–gradient relationship for stable stratification. Boundary-Layer Meteorol 125(2): 245–264

    Article  Google Scholar 

  • Mahrt L (2010a) Variability and maintenance of turbulence in the very stable boundary layer. Boundary-Layer Meteorol 135(1): 1–18

    Article  Google Scholar 

  • Mahrt L (2010b) Common microfronts and other solitary events in the nocturnal boundary layer. Q J R Meteorol Soc 136(652A): 1712–1722

    Article  Google Scholar 

  • Mahrt L (2011) The near-calm stable boundary layer. Boundary-Layer Meteorol 140(3): 343–360

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88(2): 255–278

    Article  Google Scholar 

  • Mahrt L, Vickers D (2002) Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105(2): 351–363

    Article  Google Scholar 

  • Mahrt L, Vickers D (2006) Extremely weak mixing in stable conditions. Boundary-Layer Meteorol 119(1): 19–39

    Article  Google Scholar 

  • Mauritsen T, Svensson G (2007) Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J Atmos Sci 64(2): 645–655

    Article  Google Scholar 

  • Mazellier N, Vassilicos JC (2010) Turbulence without Richardson–Kolmogorov cascade. Phys Fluids 22: 075101. doi:10.1063/1.3453708

    Article  Google Scholar 

  • Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10: 496–508

    Article  Google Scholar 

  • Mellor G (1973) Analytic prediction of the properties of stratified planetary surface layers. J Atmos Sci 30: 1061–1069

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofiz Inst Acad Nauk SSSR 24(151): 163–187

    Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol 1. MIT, Cambridge, Mass 769 pp

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216

    Article  Google Scholar 

  • Nilsson ED (1996) Planetary boundary layer structure and air mass transport during the International Arctic Ocean Expedition 1991. Tellus B 48: 178–196. doi:10.1034/j.1600-0889.1996.t01-1-00004.x

    Article  Google Scholar 

  • Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Inst Teoret Geophys Akad Nauk SSSR 1:95–115 (translation in: Boundary-Layer Meteorol 1971, 2:7–29)

    Google Scholar 

  • Ohya Y, Nakamura R, Uchida T (2008) Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-Layer Meteorol 126(3): 349–363

    Article  Google Scholar 

  • Okamoto M, Webb EK (1970) The temperature fluctuations in stable stratification. Q J R Meteorol Soc 96(410): 591–600

    Article  Google Scholar 

  • Pahlow M, Parlange MB, Porté-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99: 225–248

    Article  Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the Atmospheric Surface Flux Group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(C10): 8045. doi:10.1029/2000JC000705

    Article  Google Scholar 

  • Peters H, Baumert HZ (2007) Validating a turbulence closure against estuarine microstructure measurements. Ocean Modell 19(3–4): 183–203

    Article  Google Scholar 

  • Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proc R Soc Lond A 97: 354–373

    Article  Google Scholar 

  • Rohr JJ, Itsweire EC, Helland KN, Van Atta CW (1988) Growth and decay of turbulence in a stably stratified shear flow. J Fluid Mech 195: 77–111

    Article  Google Scholar 

  • Scotti RS, Corcos GM (1972) An experiment on the stability of small disturbances in a stratified free shear layer. J Fluid Mech 52: 499–528

    Article  Google Scholar 

  • Smedman A-S (1988) Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Boundary-Layer Meteorol 44: 231–253

    Article  Google Scholar 

  • Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34: 377–397

    Article  Google Scholar 

  • Sorbjan Z (1988) Structure of the stably-stratified boundary layer during the SESAME-1979 experiment. Boundary-Layer Meteorol 44: 255–260

    Article  Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice-Hall, Englewood Cliffs, 317 pp

  • Sorbjan Z (2008) Gradient-based similarity in the atmospheric boundary layer. Acta Geophys 56(1): 220–233

    Article  Google Scholar 

  • Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. Q J R Meteorol Soc 136(650A): 1243–1254

    Google Scholar 

  • Sorbjan Z, Grachev AA (2010) An evaluation of the flux–gradient relationship in the stable boundary layer. Boundary-Layer Meteorol 135(3): 385–405

    Article  Google Scholar 

  • Stull RB (1988) An Introduction to boundary-layer meteorology. Kluwer, Boston, 666 pp

  • Townsend A (1958) Turbulent flow in a stably stratified atmosphere. J Fluid Mech 3: 361–372

    Article  Google Scholar 

  • Vande Wiel BJH, Moene AF, Steeneveld GJ, Hartogensis OK, Holtslag AAM (2007) Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul Combust 79: 251–274. doi:10.1007/s10494-007-9094-2

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14(3): 512–526

    Article  Google Scholar 

  • Vickers D, Mahrt L (2004) Evaluating formulations of stable boundary layer height. J Appl Meteorol 43(11): 1736–1749

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96: 67–90

    Article  Google Scholar 

  • Woods JD (1969) On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci 4: 1289–1298

    Article  Google Scholar 

  • Wyngaard JC (1973) On surface-layer turbulence. In: Haugen DA (ed) Workshop on micrometeorology. American Meteorology Society, Boston, pp 101–149

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, New York, 393 pp

  • Wyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98: 590–603

    Article  Google Scholar 

  • Yagüe C, Maqueda G, Rees JM (2001) Characteristics of turbulence in the lower atmosphere at Halley IV Station, Antarctica. Dyn Atmos Ocean 34: 205–223

    Article  Google Scholar 

  • Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux–profile relationships for wind speed, φm, and temperature, φh, for the stable atmospheric boundary layer. Nonlinear Process Geophys 13(2): 185–203

    Article  Google Scholar 

  • Yamada T (1975) The critical Richardson Number and the ratio of the eddy transport coefficients obtained from a turbulence closure model. J Atmos Sci 32: 926–933

    Article  Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968) Determining the universal wind-velocity and temperature profiles in the atmospheric boundary layer. Izvestiya, Acad. Sci. USSR. Atmos Oceanic Phys 4:165–170 (English Edition)

    Google Scholar 

  • Zilitinkevich S, Baklanov A (2002) Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105(3): 389–409

    Article  Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I (2007) Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125(2): 167–191

    Article  Google Scholar 

  • Zilitinkevich SS, Esau I, Kleeorin N, Rogachevskii I, Kouznetsov RD (2010) On the velocity gradient in the stably stratified sheared flows. Part 1: asymptotic analysis and applications. Boundary-Layer Meteorol 135(3): 505–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Grachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grachev, A.A., Andreas, E.L., Fairall, C.W. et al. The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Boundary-Layer Meteorol 147, 51–82 (2013). https://doi.org/10.1007/s10546-012-9771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9771-0

Keywords

Navigation