Skip to main content
Log in

The Scaling Behaviour of a Turbulent Kinetic Energy Closure Model for Stably Stratified Conditions

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the scaling behaviour of a turbulent kinetic energy (TKE) closure model for stably stratified conditions. The mixing length scale for stable stratification is proportional to the ratio of the square root of the TKE and the local Brunt–Väisälä frequency, which is a commonly applied formulation. We analyze the scaling behaviour of our model in terms of traditional Monin–Obukov Similarity Theory and local scaling. From the model equations, we derive expressions for the stable limit behaviour of the flux–gradient relations and other scaling quantities. It turns out that the scaling behaviour depends on only a few model parameters and that the results obey local scaling theory. The analytical findings are illustrated with model simulations for the second GABLS intercomparison study. We also investigate solutions for the case in which an empirical correction function is used to express the eddy diffusivity for momentum as a function of the Richardson number (i.e. an increasing turbulent Prandtl number with stability). In this case, it seems that for certain parameter combinations the model cannot generate a steady-state solution. At the same time, its scaling behaviour becomes unrealistic. This shows that the inclusion of empirical correction functions may have large and undesired consequences for the model behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André JC, Mahrt L (1982) The nocturnal surface inversion and influence of clear-air radiative cooling. J Atmos Sci 39: 864–878

    Article  Google Scholar 

  • Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3: 417–432

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63: 3045–3054

    Article  Google Scholar 

  • Basu S, Begum ZN, Rajagopal EN (1998) Impact of boundary-layer parameterization schemes on the prediction of the Asian summer monsoon. Boundary-Layer Meteorol 86: 469–485

    Article  Google Scholar 

  • Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa JF, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119: 473–500

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341

    Article  Google Scholar 

  • Beljaars ACM, Viterbo P (1998) Role of the boundary layer in a numerical weather prediction model. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 287–304

    Google Scholar 

  • Bertin F, Barat J, Wilson R (1997) Energy dissipation rates, eddy-diffusivity, and the Prandtl number: an in situ experimental approach and its consequences on radar estimate of turbulent parameters. Radio Sci 32: 791–804

    Article  Google Scholar 

  • Bougeault P,  Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Wea Rev 117: 1872–1890

    Article  Google Scholar 

  • Brinkop S, Roeckner E (1995) Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus 47A: 197–220

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Canuto VM, Howard AM, Cheng Y, Dubovikov MS (2001) Ocean turbulence. Part I: one-point closure – momentum and heat vertical diffusivities. J Phys Oceanogr 31: 1413–1426

    Article  Google Scholar 

  • Cheinet S, Beljaars A, Köhler M, Morcrette JJ, Viterbo P (2005) Assessing physical processes in the ECMWF model forecasts using ARM SGP observations. In: ARM report series no. 1. ECMWF, U.K., 25 pp

  • Cheng Y, Canuto VM, Howard AM (2002) An improved model for the turbulent PBL. J Atmos Sci 59: 1550–1565

    Article  Google Scholar 

  • Cheng Y, Parlange MB, Brutsaert W (2005) Pathology of Monin–Obukhov similarity in the stable boundary layer. J Geophys Res 110: D06101

    Article  Google Scholar 

  • Chimonas C, Nappo CJ (1989) Wave drag in the planetary boundary layer over complex terrain. Boundary-Layer Meteorol 47: 217–232

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteorol Soc 126: 1–30

    Article  Google Scholar 

  • Cuxart J, Morales G, Terradellas E, Yagüe C (2002) Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer. Boundary-Layer Meteorol 105: 305–328

    Article  Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek MB, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld GJ, Svensson G, Taylor P, Weng W, Wunsch S, Xu KM (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118: 273–303

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18: 495–527

    Article  Google Scholar 

  • Duynkerke PG (1991) Radiation fog: a comparison of model simulations with detailed observations. Mon Wea Rev 119: 324–341

    Article  Google Scholar 

  • Duynkerke PG, de Roode SR (2001) Surface energy balance and turbulence characteristics observed at the SHEBA ice camp during FIRE III. J Geophys Res 106: 15313–15322

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7: 363–372

    Article  Google Scholar 

  • Högström U (1988) Nondimensional wind and temperature profiles in the atmospheric boundary layer. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Holtslag AAM (1998) Modelling of atmospheric boundary layers. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 287–304

    Google Scholar 

  • Holtslag AAM (2006) GEWEX atmospheric boundary layer study (GABLS) on stable boundary layers. Boundary-Layer Meteorol 118: 85–110

    Article  Google Scholar 

  • Howell JF, Sun J (1999) Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90: 495–520

    Article  Google Scholar 

  • Jones CG, Lenderink G, Ivarsson LI (2003) Representing subgrid scale mixing under stable conditions: importance for overall model synoptic development. Hirlam Newslett 43: 125–134

    Google Scholar 

  • Kim J, Mahrt L (1992) Simple formulation of mixing in the stable free atmosphere and nocturnal boundary layer. Tellus 44A: 381–394

    Google Scholar 

  • Kondo J, Kanechika O, Yasuda N (1978) Heat and momentum transfer under strong stability in the atmospheric surface layer. J Atmos Sci 35: 1012–1021

    Article  Google Scholar 

  • Lenderink G, Holtslag AAM (2000) Evaluation of the kinetic energy approach for modeling turbulent fluxes in stratocumulus. Mon Wea Rev 128: 244–258

    Article  Google Scholar 

  • Lenderink G, Holtslag AAM (2004) An updated length scale formulation for turbulent mixing in clear and cloudy boundary layers. Quart J Roy Meteorol Soc 130: 3405–3427

    Article  Google Scholar 

  • Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model development. In: TR-252. KNMI, The Netherlands, 24 pp

  • Lenderink G, Siebesma AP, Cheinet S, Irons S, Jones CG, Marquet P, Mueller F, Olmeda D, Calvo J, Sanchez E, Soares PMM (2004) The diurnal cycle of shallow cumulus clouds over land: A single column model intercomparison study. Quart J Roy Meteorol Soc 130: 3339–3364

    Article  Google Scholar 

  • Lock A, Mailhot J (2006) Combining non-local scalings with a TKE closure for mixing in boundary layer clouds. Boundary-Layer Meteorol 121: 313–338

    Article  Google Scholar 

  • Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the PBL parameterization at ECMWF. In: Workshop on boundary layer parameterization. ECMWF, UK, pp 59–79

  • Mahrt L (1987) Grid-averaged surface fluxes. Mon Wea Rev 115: 1550–1560

    Article  Google Scholar 

  • Mahrt L (2007) The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification. Boundary-Layer Meteorol 125: 245–264

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany W, Oncley S (1998) Nocturnal boundary layer regimes. Boundary-Layer Meteorol 88: 255–278

    Article  Google Scholar 

  • Mailot J, Benoit R (1982) A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models. J Atmos Sci 39: 2249–2266

    Article  Google Scholar 

  • Mauritsen T, Svensson G (2007) Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J Atmos Sci 64: 645–655

    Article  Google Scholar 

  • McCabe A, Brown AR (2007) The role of surface heterogeneity in modeling the stable boundary layer. Boundary-Layer Meteorol 122: 517–534

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31: 1791–1806

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83: 555–581

    Article  Google Scholar 

  • Schumann U, Gerz T (1995) Turbulent mixing in stably stratified shear flows. J Appl Meteorol 34: 33–48

    Article  Google Scholar 

  • Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer for three contrasting nights in CASES-99. J Atmos Sci 63: 920–935

    Article  Google Scholar 

  • Steeneveld GJ, Mauritsen T, de Bruijn EIF, Vila-Guerau de Arellano J, Svensson G, Holtslag AAM (2007) Evaluation of limited area models for the representation of the diurnal cycle and contrasting nights in CASES99. J Appl Meteorol Clim (in press)

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 666

    Google Scholar 

  • Svensson G, Holtslag AAM (2006) Single column modeling of the diurnal cycle based on CASES99 data – GABLS second intercomparison project. In: 17th symposium on boundary layers and turbulence, San Diego, CA, USA, 22–25 May 2006. Amer. Meteorol. Soc., Boston, p 8.1

  • Tijm ABC (2004) Tuning CBR. Hirlam Newslett 46: 18–28

    Google Scholar 

  • Umlauf L, Burchard H (2005) Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont Shelf Res 25: 795–827

    Article  Google Scholar 

  • Viterbo P, Beljaars ACM, Mahfouf JF, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Quart J Roy Meteorol Soc 125: 2401–2426

    Article  Google Scholar 

  • Weng W, Taylor PA (2003) On modelling the one-dimensional atmospheric boundary layer. Boundary-Layer Meteorol 107: 371–400

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1974) The evolution of a convective planetary boundary layer – a higher-order-closure model study. Boundary-Layer Meteorol 7: 289–308

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 125: 193–205

    Article  Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I (2007) Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125: 167–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Baas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baas, P., de Roode, S.R. & Lenderink, G. The Scaling Behaviour of a Turbulent Kinetic Energy Closure Model for Stably Stratified Conditions. Boundary-Layer Meteorol 127, 17–36 (2008). https://doi.org/10.1007/s10546-007-9253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9253-y

Keywords

Navigation