Skip to main content

Advertisement

Log in

An Evaluation of the Flux–Gradient Relationship in the Stable Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Data collected during the SHEBA and CASES-99 field programs are employed to examine the flux–gradient relationship for wind speed and temperature in the stably stratified boundary layer. The gradient-based and flux-based similarity functions are assessed in terms of the Richardson number Ri and the stability parameter z*, z being height and Λ* the local Obukhov length. The resulting functions are expressed in an analytical form, which is essentially unaffected by self-correlation, when thermal stratification is strong. Turbulence within the stably stratified boundary layer is classified into four regimes: “nearly-neutral” (0 < z* < 0.02), “weakly-stable” (0.02 < z* < 0.6), “very-stable” (0.6 < z* < 50), and “extremely-stable” (z* > 50). The flux-based similarity functions for gradients are constant in “nearly-neutral” conditions. In the “very-stable” regime, the dimensionless gradients are exponential, and proportional to (z*)3/5. The existence of scaling laws in “extremely-stable” conditions is doubtful. The Prandtl number Pr decreases from 0.9 in nearly-neutral conditions and to about 0.7 in the very-stable regime. The necessary condition for the presence of steady-state turbulence is Ri < 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson PS (2009) Measurement of Prandtl number as function of Richardson number avoiding self-correlation. Boundary-Layer Meteorol 131: 345–362

    Article  Google Scholar 

  • Andreas EL, Hill RJ, Gosz JR, Moore DI, Otto WD, Sarma AD (1998) Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Boundary-Layer Meteorol 86: 379–408

    Article  Google Scholar 

  • Andreas EL, Fairall CW, Guest PS, Persson POG (1999) An overview of the SHEBA atmospheric surface flux program. In: 13th symposium on boundary layers and turbulence. American Meteorological Society, Dallas, Proceedings, pp 550–555

  • Andreas EL, Fairall CW, Grachev AA, Guest PS, Horst TW, Jordan RE, Persson POG (2003) Turbulent transfer coefficients and roughness lengths over sea ice: the SHEBA results. In: Seventh conference on polar meteorology and oceanography and joint symposium on high-latitude climate variations, 12–16 May 2003. American Meteorological Society, Hyannis, AMS Preprint CD-ROM

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559: 117–149

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63: 3045–3054

    Article  Google Scholar 

  • Banta RM (2008) Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys 56: 58–87

    Article  Google Scholar 

  • Beare RJ, Edwards JM, Lapworth AJ (2006) Simulations of the observed evening transition and nocturnal boundar layers: large-eddy simulation. Q J Roy Meteorol Soc 132: 81–99

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in neutral atmosphere. J Geophys Res 67: 3095–3103

    Article  Google Scholar 

  • Blumen W, Banta RM, Burns SP, Fritts DC, Newsom R, Poulos GS, Jielun Sun J (2001) Turbulence statistics of a Kelvin–Helmholtz billow event observed in the night-time boundary layer during the Cooperative Atmosphere-Surface Exchange Study field program. Dyn Atmos Oceans 34: 189–204

    Article  Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer, chapter 2. In: Haugen DA (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 67–100

  • Businger JA, Miyake M, Dyer AJ, Bradley F (1967) On the direct determination of the turbulent heat flux near the ground. J Appl Meteorol 6: 1025–1032

    Article  Google Scholar 

  • Churchill SW (2002) A reinterpretation of the turbulent Prandtl number. Ind Eng Chem Res 41: 6393–6401

    Article  Google Scholar 

  • Coulter RL, Doran JC (2002) Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol 105: 329–349

    Article  Google Scholar 

  • Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys 56: 100–113

    Article  Google Scholar 

  • Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernandez A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM., Vila J, Redondo JM, Cantalapiedra IR, Conangla L (2000) Stable atmospheric boundary layer experiment in Spain (SABLES, 98): a report. Boundary-Layer Meteorol 96: 337–370

    Article  Google Scholar 

  • Duynkerke PG (1999) Turbulence, radiation and frog in Dutch stable boundary layers. Bounduary-Layer Meteorol 90: 447–477

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux profile relationship. Boundary-Layer Meteorol 7: 363–372

    Article  Google Scholar 

  • Edwards JM, Beare RJ, Lapworth AJ (2006) Simulations of the observed evening transition and nocturnal boundary layers: single-column modelling. Q J Roy Meteorol Soc 132: 61–80

    Article  Google Scholar 

  • Esau I, Grachev A (2007) Turbulent Prandtl number in stably stratified atmospheric boundary layer: intercomparison between LES and SHEBA data. e-WindEng 006: 01–17

    Google Scholar 

  • Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence. Atmos Sci Letters, ASL.153

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116: 201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007a) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124: 315–333

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007b) On the turbulent Prandtl number in the stable atmospheric boundary layer. Boundary-Layer Meteorol 125: 329–341

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2008) Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta Geophys 56: 142–166

    Article  Google Scholar 

  • Hicks BB (1976) Wind profile relationship from Wangara experiments. Q J Roy Meteorol Soc 102: 535–551

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Holtslag AAM, De Bruin FTM (1988) Applied modeling of night-time surface energy balance over land. J Appl Meteorol 27: 689–704

    Article  Google Scholar 

  • Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J Fluid Mech 212: 637–662

    Article  Google Scholar 

  • King JC, Connolley WM, Derbyshire SH (2001) Sensitivity of modelled Antarctic climate to surface and boundary layer parameterizations. Q J Roy Meteorol Soc 127: 779–794

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J Roy Meteorol Soc 130: 2087–2103

    Article  Google Scholar 

  • Kukharets VP, Tsvang LR (1998) Atmospheric turbulence characteristics over a temperature-inhomogeneous land surface. Part I: Statistical characteristics of small-scale spatial inhomogeneities of land surface temperature. Boundary-Layer Meteorol 86: 89–101

    Article  Google Scholar 

  • Kustas W, Li F, Jackson J, Prueger J, MacPherson J, Wolde M (2004) Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sens Environ 92: 535–547

    Article  Google Scholar 

  • Louis J-F (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202

    Article  Google Scholar 

  • Mahli YS (1995) The significance of dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Boundary-Layer Meteorol 74: 389–396

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. J Theor Comp Fluid Dyn 11: 263–280

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7: 331–334

    Article  Google Scholar 

  • Mahrt L, Vickers D (2006) Extremely weak mixing in stable conditions. Boundary-Layer Meteorol 119: 19–39

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88: 255–278

    Article  Google Scholar 

  • Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104: 185–198

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20: 851–875

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulence mixing in the surface layer of the atmosphere. Trudy Geof Inst AN SSSR 24: 163–187

    Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37: 17–36

    Article  Google Scholar 

  • Newsom KR, Banta RM (2003) Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J Atmos Sci 60: 16–33

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216

    Article  Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, de Bruin H, Bernhofer C, Christen A, van Gorsel E, Grantz D, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T. (2007) The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Boundary-Layer Meteorol 123: 1–28

    Article  Google Scholar 

  • Oyha YD (2001) Wind tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol 98: 57–82

    Article  Google Scholar 

  • Oyha YD, Neff E, Meroney EN (1997) Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorol 83: 139–161

    Article  Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107: 8045. doi:10.1029/2000JC000705

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley BB, Jensen ML (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83: 555–581

    Article  Google Scholar 

  • Prandtl L (1932) Meteorologische Anwendungen der Stromungslehre. Beitr Phys Atmos 19: 188–202

    Google Scholar 

  • Savijärvi H (2009) Sable boundary layer: parameterizations for local and larger scales. Q J Roy Meteorol Soc 135: 914–921

    Article  Google Scholar 

  • Schwarz P, Law B, Williams M, Irvine J, Kurpius M, Moore D (2004) Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Glob Biochem Cycl 18: 1029–1037

    Google Scholar 

  • Sorbjan Z (1986a) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34: 377–397

    Article  Google Scholar 

  • Sorbjan Z (1986b) On the vertical distribution of passive species in the atmospheric boundary layer. Boundary-Layer Meteorol 35: 73–81

    Article  Google Scholar 

  • Sorbjan Z (1986c) Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Boundary-Layer Meteorol 35: 257–275

    Article  Google Scholar 

  • Sorbjan Z (1988) Structure of the stably-stratified boundary layer during the Sesame-1979 experiment. Boundary-Layer Meteorol 44: 255–260

    Article  Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice-Hall, Englewood Cliffs, 317 pp

    Google Scholar 

  • Sorbjan Z (2006a) Local structure of turbulence in stably-stratified boundary layers. J Atmos Sci 63: 526–537

    Article  Google Scholar 

  • Sorbjan Z (2006b) Comments on “flux–gradient relationship, self-correlation and intermittency in the stable boundary layer”. Q J Roy Meteorol Soc B 617(132): 1371–1373

    Article  Google Scholar 

  • Sorbjan Z, Balsley BB (2008) Microstructure of turbulence in the nocturnal boundary layer. Boundary-Layer Meteorol 129: 191–210

    Article  Google Scholar 

  • Taylor PA (1971) A note on the log-linear velocity profile in stable conditions. Q J Roy Meteorol Soc 97: 326–329

    Article  Google Scholar 

  • Thomas C, Martin JG, Goeckede M, Siqueira MBS, Foken T, Law BE, Loescher HW, Katul G (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148: 1210–1229

    Article  Google Scholar 

  • Tsvang LR, Kukharets VP, Perepelkin VG (1998) Atmospheric turbulence characteristics over a temperature-inhomogeneous Land Surface. Part II: The effect of small-scale inhomogeneities of surface temperature on some characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 86: 103–124

    Article  Google Scholar 

  • Van de Wiel BJH, Moene A, Hartogenesis G, De Bruin HA, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layeor over land. Part III. A classification for observations during CASES-99. J Atmos Sci 60: 2509–2522

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20: 660–672

    Article  Google Scholar 

  • Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118: 431–447

    Article  Google Scholar 

  • Wyngaard JC (1973) On surface-layer turbulence. In: Haugen DA (eds) Workshop on micrometeorology. American Meteorological Society, Boston, pp 101–148

    Google Scholar 

  • Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux–profile relationships for wind speed, φ m , and temperature, φ h , for the stable atmospheric boundary layer. Nonlinear Process Geophys 13: 185–203

    Article  Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968) On determination of the universal wind and temperature profiles in the surface layer of the atmosphere. Izv Acad Sci USSR Atmos Ocean Phys 4: 915–929

    Google Scholar 

  • Zilitinkevich S, Elperin T, Kleeorin N, Rogachevskii I, Esau I, Mauritsen T, Miles M (2008) Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Q J Roy Meteorol Soc 134: 793–799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Sorbjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorbjan, Z., Grachev, A.A. An Evaluation of the Flux–Gradient Relationship in the Stable Boundary Layer. Boundary-Layer Meteorol 135, 385–405 (2010). https://doi.org/10.1007/s10546-010-9482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9482-3

Keywords

Navigation