Skip to main content
Log in

Stable Boundary-Layer Scaling Regimes: The Sheba Data

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Turbulent and mean meteorological data collected at five levels on a 20-m tower over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are analyzed to examine different regimes of the stable boundary layer (SBL). Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification. Scaling arguments and our analysis show that the SBL can be classified into four major regimes: (i) surface-layer scaling regime (weakly stable case), (ii) transition regime, (iii) turbulent Ekman layer, and (iv) intermittently turbulent Ekman layer (supercritical stable regime). These four regimes may be considered as the basic states of the traditional SBL. Sometimes these regimes, especially the last two, can be markedly perturbed by gravity waves, detached elevated turbulence (‘upside down SBL’), and inertial oscillations. Traditional Monin–Obukhov similarity theory works well in the weakly stable regime. In the transition regime, Businger–Dyer formulations work if scaling variables are re-defined in terms of local fluxes, although stability function estimates expressed in these terms include more scatter compared to the surface-layer scaling. As stability increases, the near-surface turbulence is affected by the turning effects of the Coriolis force (the turbulent Ekman layer). In this regime, the surface layer, where the turbulence is continuous, may be very shallow (< 5 m). Turbulent transfer near the critical Richardson number is characterized by small but still significant heat flux and negligible stress. The supercritical stable regime, where the Richardson number exceeds a critical value, is associated with collapsed turbulence and the strong influence of the earth’s rotation even near the surface. In the limit of very strong stability, the stress is no longer a primary scaling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. L. Andreas (2002) ArticleTitle‘Parameterizing Scalar Transfer over Snow and Ice, A Review’ J. Hydrometeorol. 3 417–432 Occurrence Handle10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO;2

    Article  Google Scholar 

  • E. L Andreas B. A. Cash (1996) ArticleTitle‘A New Formulation for the Bowen Ratio over Saturated Surfaces’ J. Appl. Meteorol. 35 IssueID8 1279–1289 Occurrence Handle10.1175/1520-0450(1996)035<1279:ANFFTB>2.0.CO;2

    Article  Google Scholar 

  • E. L. Andreas R. J. Hill J. R. Gosz D. I. Moore W. D. Otto A. D. Sarma (1998) ArticleTitle‘Statistics of Surface-Layer Turbulence over Terrain with Metre-Scale Heterogeneity’ Boundary-Layer Meteorol. 86 379–408 Occurrence Handle10.1023/A:1000609131683

    Article  Google Scholar 

  • Andreas, E. L, Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 1999, ‘An Overview of the SHEBA Atmospheric Surface Flux Program’, 13th Symposium on Boundary Layers and Turbulence. Dallas, TX, Amer. Meteorol. Soc., Proceedings, 550–555.

  • E. L Andreas K. J. Claffey A. P. Makshtas (2000) ArticleTitle‘Low-Level Atmospheric Jets and Inversions over the Western Weddell Sea’ Boundary-Layer Meteorol. 97 459–486 Occurrence Handle10.1023/A:1002793831076

    Article  Google Scholar 

  • E. L Andreas P. S. Guest P. O. G. Persson C. W. Fairall T. W. Horst R. E. Moritz S. R. Semmer (2002) ArticleTitle‘Near-Surface Water Vapor over Polar Sea Ice Is Always Near Ice-Saturation’ J. Geophys. Res. 107 IssueIDC8 8032 Occurrence Handle10.1029/2000JC000411

    Article  Google Scholar 

  • S. P. Arya (2001) Introduction to Micrometeorology EditionNumber2 Academic Press San Diego 403

    Google Scholar 

  • A. C. M. Beljaars A. A. M. Holtslag (1991) ArticleTitle‘Flux Parameterization over Land Surfaces for Atmospheric Models’ J. Appl. Meteorol. 30 327–341 Occurrence Handle10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2

    Article  Google Scholar 

  • F. Beyrich (1997) ArticleTitle‘Mixing Height Estimation from Sodar – A Critical Discussion’ Atm. Environ. 21 3941–3953

    Google Scholar 

  • Businger, J. A.: 1966, ‘Transfer of Heat and Momentum in the Atmospheric Boundary Layer’, Proc. Arctic Heat Budget and Atmospheric Circulation. Santa Monica, Calif., RAND Corp., 305–332.

  • J. A. Businger (1988) ArticleTitle‘A Note on the Businger–Dyer Profiles’ Boundary-Layer Meteorol. 42 145–151 Occurrence Handle10.1007/BF00119880

    Article  Google Scholar 

  • J. A. Businger J. C. Wyngaard Y. Izumi E. F. Bradley (1971) ArticleTitle‘Flux-Profile Relationships in the Atmospheric Surface Layer’ J. Atmos. Sci. 28 181–189 Occurrence Handle10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Article  Google Scholar 

  • Claffey, K. J., Andreas, E. L, Perovich, D. K., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 1999, ‘Surface Temperature Measurements at SHEBA’, in Preprint Volume, Fifth Conference on Polar Meteorology and Oceanography, 10–15 January 1999, Dallas, TX, American Meteorological Society, Boston, pp. 327–332.

  • G. T. Csanady (1969) ArticleTitle‘Diffusion in an Ekman Layer’ J. Atmos. Sci. 26 IssueID3 414–426 Occurrence Handle10.1175/1520-0469(1969)026<0414:DIAEL>2.0.CO;2

    Article  Google Scholar 

  • W. F. Dabberdt (1970) ArticleTitle‘A Selective Climatology of Plateau Station, Antarctica’ J. Appl. Meteorol. 9 IssueID2 311–315 Occurrence Handle10.1175/1520-0450(1970)009<0312:ASCOPS>2.0.CO;2

    Article  Google Scholar 

  • S. H. Derbyshire (1990) ArticleTitle‘Nieuwstadt’s Stable Boundary Layer Revisited’ Quart. J. Roy. Meteorol. Soc. 116 127–158 Occurrence Handle10.1256/smsqj.49105

    Article  Google Scholar 

  • P. G. Duynkerke (1990) ArticleTitle‘Turbulence, Radiation and Fog in Dutch Stable Boundary Layers’ Boundary-Layer Meteorol. 90 IssueID3 447–477 Occurrence Handle10.1023/A:1026441904734

    Article  Google Scholar 

  • P. G. Duynkerke S. R. Roode Particlede (2001) ArticleTitle‘Surface Energy Balance and Turbulence Characteristics Observed at the SHEBA Ice Camp during FIRE III’ J. Geophys. Res. 106 IssueIDD14 15313–15322 Occurrence Handle10.1029/2000JD900537

    Article  Google Scholar 

  • A. J. Dyer (1974) ArticleTitle‘A Review of Flux-Profile Relationships’ Boundary-Layer Meteorol. 7 363–372 Occurrence Handle10.1007/BF00240838

    Article  Google Scholar 

  • A. J. Dyer E. F. Bradley (1982) ArticleTitle‘An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE’ Boundary-Layer Meteorol. 22 3–19 Occurrence Handle10.1007/BF00128053

    Article  Google Scholar 

  • A. J. Dyer B. B. Hicks (1970) ArticleTitle‘Flux-Gradient Relationships in the Constant Flux Layer’ Quart. J. Roy. Meteorol. Soc. 96 715–721

    Google Scholar 

  • V. W. Ekman (1905) ArticleTitle‘On the Influence of the Earth’s Rotation on Ocean Currents’ Arch. Math. Astron. Phys. 2 1–52

    Google Scholar 

  • J. Forrer M. W. Rotach (1997) ArticleTitle‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet’ Boundary-Layer Meteorol. 85 111–136 Occurrence Handle10.1023/A:1000466827210

    Article  Google Scholar 

  • J. R. Garratt (1992) The Atmospheric Boundary Layer Cambridge University Press Cambridge 316

    Google Scholar 

  • J. R. Garratt R. A. Brost (1981) ArticleTitle‘Radiative Cooling Effects Within and Above the Nocturnal Boundary Layer’ J. Atmos. Sci. 38 IssueID12 2730–2746 Occurrence Handle10.1175/1520-0469(1981)038<2730:RCEWAA>2.0.CO;2

    Article  Google Scholar 

  • K. Goode S. E. Belcher (1999) ArticleTitle‘On the Parameterization of the Effective Roughness Length for Momentum Transfer over Heterogeneous Terrain’ Boundary-Layer Meteorol. 93 IssueID1 133–154 Occurrence Handle10.1023/A:1002035509882

    Article  Google Scholar 

  • Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L, and Guest, P. S.: 2002, ‘Stable Boundary-Layer Regimes Observed During the SHEBA Experiment’, in 15th Symposium on Boundary Layers and Turbulence. Wageningen, The Netherlands, Am. Meteorol. Soc., Proceedings, 374–377.

  • Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L, Guest, P. S., and Jordan, R.␣E.: 2003, ‘Turbulence Decay in the Stable Arctic Boundary Layer’, Seventh Conference on Polar Meteorology and Oceanography and Joint Symposium on High-Latitude Climate Variations. Hyannis, Massachusetts, Am. Meteorol. Soc., Preprint CD-ROM.

  • Guest, P. S., Andreas, E. L, Fairall, C. W., and Persson, P. O. G.: 1999, ‘Problems with Surface Layer Similarity Theory in the Arctic’, Fifth Conference on Polar Meteorology and Oceanography. Dallas, TX, Am. Meteorol. Soc., Proceedings, 132–135.

  • U. Högström (1988) ArticleTitle‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’ Boundary-Layer Meteorol. 42 55–78 Occurrence Handle10.1007/BF00119875

    Article  Google Scholar 

  • A. A. M. Holtslag F. T. M. Nieuwstadt (1986) ArticleTitle‘Scaling the Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 36 201–209 Occurrence Handle10.1007/BF00117468

    Article  Google Scholar 

  • J. F. Howell J. Sun (1999) ArticleTitle‘Surface-Layer Fluxes in Stable Conditions’ Boundary-Layer Meteorol. 90 IssueID3 495–520 Occurrence Handle10.1023/A:1001788515355

    Article  Google Scholar 

  • R. E. Jordan E. L. Andreas A. P. Makshtas (1999) ArticleTitle‘Heat Budget of Snow-Covered Sea Ice at North Pole 4’ J. Geophys. Res. 104 7785–7806 Occurrence Handle10.1029/1999JC900011

    Article  Google Scholar 

  • B. A. Kader A. M. Yaglom (1990) ArticleTitle‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’ J. Fluid Mech. 212 637–662 Occurrence HandleMR1051342

    MathSciNet  Google Scholar 

  • J. C. Kaimal J. E. Gaynor (1991) ArticleTitle‘Another Look at Sonic Thermometry’ Boundary-Layer Meteorol. 56 401–410 Occurrence Handle10.1007/BF00119215

    Article  Google Scholar 

  • J. C. Kaimal J. J. Finnigan (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurements Oxford University Press New York, Oxford 289

    Google Scholar 

  • J. C. King (1990) ArticleTitle‘Some Measurements of Turbulence over an Antarctic Shelf’ Quart. J. Roy. Meteorol. Soc. 116 379–400 Occurrence Handle10.1256/smsqj.49207

    Article  Google Scholar 

  • V. P. Kukharets L. R. Tsvang (1998) ArticleTitle‘Atmospheric Turbulence Characteristics over a Temperature-Inhomogeneous Land Surface. Part I: Statistical Characteristics of Small-Scale Spatial Inhomogeneities of Land Surface Temperature’ Boundary-Layer Meteorol. 86 IssueID1 89–101 Occurrence Handle10.1023/A:1000685529866

    Article  Google Scholar 

  • S. E. Larsen J. B. Edson C. W. Fairall P. G. Mestayer (1993) ArticleTitle‘Measurements of Temperature Spectra by a Sonic Anemometer’ J. Atmos. Oceanic Technol. 10 IssueID3 345–354 Occurrence Handle10.1175/1520-0426(1993)010<0345:MOTSBA>2.0.CO;2

    Article  Google Scholar 

  • H. H. Lettau W. F. Dabberdt (1970) ArticleTitle‘Variangular Wind Spirals’ Boundary-Layer Meteorol. 1 IssueID1 64–79 Occurrence Handle10.1007/BF00193905

    Article  Google Scholar 

  • Lettau, H., Riordan, A., and Kuhn, M.: 1977, ‘Air Temperature and Two-Dimensional Wind Profiles in the Lowest 32 Meters as a Function of Bulk Stability’, in J. A. Businger (ed.), Meteorological Studies at Plateau Station, Antarctica. Antarctic Research Series, Vol. 25, Am. Geophys. Union, 77–91.

  • L. Mahrt (1998) ArticleTitle‘Stratified Atmospheric Boundary Layers and Breakdown of Models’ Theor. Comp. Fluid. Dynam. 11 263–279 Occurrence Handle10.1007/s001620050093

    Article  Google Scholar 

  • L. Mahrt (1999) ArticleTitle‘Stratified Atmospheric Boundary Layers’ Boundary-Layer Meteorol. 90 IssueID3 375–396 Occurrence Handle10.1023/A:1001765727956

    Article  Google Scholar 

  • L. Mahrt D. Vickers (2002) ArticleTitle‘Contrasting Vertical Structures of Nocturnal Boundary Layers’ Boundary-Layer Meteorol. 105 IssueID2 351–363 Occurrence Handle10.1023/A:1019964720989

    Article  Google Scholar 

  • L. Mahrt J. Sun W. Blumen T. Delany S. Oncley (1998) ArticleTitle‘Nocturnal Boundary-Layer Regimes’ Boundary-Layer Meteorol. 88 255–278 Occurrence Handle10.1023/A:1001171313493

    Article  Google Scholar 

  • Y. S. Malhi (1995) ArticleTitle‘The Significance of the Dual Solutions for Heat Fluxes Measured by the Temperature Fluctuation Method in Stable Conditions’ Boundary-Layer Meteorol. 74 389–396 Occurrence Handle10.1007/BF00712379

    Article  Google Scholar 

  • M. G. McPhee D. G. Martinson (1994) ArticleTitle‘Turbulent Mixing Under Drifting Pack Ice in the Weddell Sea’ Science 263 218–221

    Google Scholar 

  • A. S. Monin A. M. Obukhov (1954) ArticleTitle‘Basic Laws Of Turbulent Mixing in the Surface Layer of the Atmosphere’ Trudy Geofiz. Inst. Acad. Nauk SSSR. 24 IssueID151 163–187

    Google Scholar 

  • A. S. Monin A. M. Yaglom (1971) Statistical Fluid Mechanics: Mechanics of Turbulence MIT Press Cambridge, Massachusetts 769

    Google Scholar 

  • F. T. M. Nieuwstadt (1984) ArticleTitle‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’ J. Atmos. Sci. 41 IssueID14 2202–2216 Occurrence Handle10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2

    Article  Google Scholar 

  • Obukhov, A. M.: 1946, ‘Turbulence in an Atmosphere with a Non-Uniform Temperature’, Trudy Inst. Teoret. Geophys. Akad. Nauk SSSR. 1, 95–115 (translation in: Boundary-Layer Meteorol. 1971, 2, 7–29).

  • M. Pahlow M. B. Parlange F. Porté-Agel (2001) ArticleTitle‘On Monin–Obukhov Similarity in the Stable Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 99 IssueID2 225–248 Occurrence Handle10.1023/A:1018909000098

    Article  Google Scholar 

  • Paulson, C. A. and Pegau, W. S.: 2001, ‘The Summertime Thermohaline Evolution of an Arctic Lead: Heat Budget of the Surface Layer’, in Sixth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Am. Meteorol. Soc., Proceedings, pp. 271–274.

  • D. K. Perovich W. B. Tucker K. A. Ligett (2002) ArticleTitle‘Aerial Observations of the Evolution of Ice Surface Conditions during Summer’ J. Geophys. Res. 107 IssueIDC10 8048 Occurrence Handle10.1029/2000JC000449

    Article  Google Scholar 

  • Persson, P. O. G., Uttal, T., Intrieri, J., Fairall, C. W., Andreas, E. L, and Guest, P. S.: 1999, ‘Observations of Large Thermal Transitions during the Arctic Night from a Suite of Sensors at SHEBA’, in Fifth Conference on Polar Meteorology and Oceanography. Dallas, TX, Am. Meteorol. Soc., Proceedings, pp. 306–309.

  • Persson, P. O. G., Bao, J. -W., and Michelson, S.: 2002a, ‘Mesoscale Modeling of the Wintertime Boundary Layer Structure over the Arctic Pack Ice’, in 15th Symposium on Boundary Layers and Turbulence. Wageningen, The Netherlands, Amer. Meteorol. Soc., Proceedings, pp. 335–338.

  • P. O. G. Persson C. W. Fairall E. L. Andreas P. S. Guest D.K. Perovich (2002) ArticleTitle‘Measurements near the Atmospheric Surface Flux Group Tower at SHEBA: Near-Surface Conditions and Surface Energy Budget’ J. Geophys. Res. 107 IssueIDC10 8045 Occurrence Handle10.1029/2000JC000705

    Article  Google Scholar 

  • J. F. Price R. A. Weller R. R. Schudlich (1987) ArticleTitle‘Wind-Driven Ocean Currents and Ekman Transport’ Science 238 1534–1538

    Google Scholar 

  • J. F. Price M. A. Sundermeyer (1999) ArticleTitle‘Stratified Ekman Layers’ J. Geophys. Res. 104 IssueIDC9 20467–20494 Occurrence Handle10.1029/1999JC900164

    Article  Google Scholar 

  • A.-S. Smedman (1988) ArticleTitle‘Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 44 231–253 Occurrence Handle10.1007/BF00116064

    Article  Google Scholar 

  • Z. Sorbjan (1989) Structure of the Atmospheric Boundary Layer Prentice-Hall New Jersey 317

    Google Scholar 

  • L. R. Tsvang V. P. Kukharets V. G. Perepelkin (1998) ArticleTitle‘Atmospheric Turbulence Characteristics over a Temperature-Inhomogeneous Land Surface Part II: The Effect of Small-Scale Inhomogeneities of Surface Temperature on Some Characteristics of the Atmospheric Surface Layer’ Boundary-Layer Meteorol. 86 IssueID1 103–124 Occurrence Handle10.1023/A:1000652913936

    Article  Google Scholar 

  • Uttal, T. 27 co-authors: 2002, ‘Surface Heat Budget of the Arctic Ocean’, Bull. Amer. Meteorol. Soc. 83(2), 255–276.

  • A. P. Ulden ParticleVan J. Wieringa (1996) ArticleTitle‘Atmospheric Boundary-Layer Research at Cabauw’ Boundary-Layer Meteorol. 78 39–69 Occurrence Handle10.1007/BF00122486

    Article  Google Scholar 

  • E. K. Webb (1970) ArticleTitle‘Profile Relationships: The Log-Linear Range and Extension to Strong Stability’ Quart. J. Roy. Meteorol. Soc. 96 67–90

    Google Scholar 

  • J. C. Wyngaard (1973) ‘On Surface-Layer Turbulence’ D. A. Haugen (Eds) Workshop on Micrometeorology American Meteorology Society Boston, MA 101–149

    Google Scholar 

  • J. C. Wyngaard O. R. Cotè (1972) ArticleTitle‘Cospectral Similarity in the Atmospheric Surface Layer’ Quart. J. Roy. Meteorol. Soc. 98 590–603 Occurrence Handle10.1256/smsqj.41707

    Article  Google Scholar 

  • A. M. Yaglom (1977) ArticleTitle‘Comments on Wind and Temperature Flux-Profile Relationships’ Boundary-Layer Meteorol. 11 89–102 Occurrence Handle10.1007/BF00221826

    Article  Google Scholar 

  • C. Yagüe J. Cano (1994) ArticleTitle‘The Influence of Stratification on Heat and Momentum Turbulent Transfer in Antarctica’ Boundary-Layer Meteorol. 69 123–136 Occurrence Handle10.1007/BF00713298

    Article  Google Scholar 

  • C. Yagüe G. Maqueda J. M. Rees (2001) ArticleTitle‘Characteristics of Turbulence in the Lower Atmosphere at Halley IV Station, Antarctica’ Dyn. Atmos. Ocean. 34 205–223 Occurrence Handle10.1016/S0377-0265(01)00068-9

    Article  Google Scholar 

  • A. V. Yanes (1962) ArticleTitle‘Melting of Snow and Ice in the Central Arctic’ Problems Arctic Antarctic. 11 g-1–g-13

    Google Scholar 

  • S. S. Zilitinkevich (2002) ArticleTitle‘Third-Order Transport Due to Internal Waves and Non-Local Turbulence in the Stably Stratified Surface Layer’ Quart. J. Roy. Meteorol. Soc. 128 913–925 Occurrence Handle10.1256/0035900021643746

    Article  Google Scholar 

  • S. Zilitinkevich A. Baklanov (2002) ArticleTitle‘Calculation of the Height of the Stable Boundary Layer in Practical Applications’ Boundary-Layer Meteorol. 105 389–409 Occurrence Handle10.1023/A:1020376832738

    Article  Google Scholar 

  • S. Zilitinkevich P. Calanca (2000) ArticleTitle‘An Extended Similarity-Theory for the Stably Stratified Atmospheric Surface Layer’ Quart. J. Roy. Meteorol. Soc. 126 1913–1923 Occurrence Handle10.1256/smsqj.56617

    Article  Google Scholar 

  • S. S. Zilitinkevich D. V. Chalikov (1968) ArticleTitle‘Determining the Universal Wind-Velocity and Temperature Profiles in the Atmospheric Boundary Layer’ Izvestiya, Acad. Sci., USSR, Atmos. Oceanic Phys. 4 IssueID3 165–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Grachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grachev, A.A., Fairall, C.W., Persson, P.O.G. et al. Stable Boundary-Layer Scaling Regimes: The Sheba Data. Boundary-Layer Meteorol 116, 201–235 (2005). https://doi.org/10.1007/s10546-004-2729-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-2729-0

Keywords

Navigation