Skip to main content
Log in

Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model permits the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Richardson number separating—as is usually assumed—the turbulent and the laminar regimes, the suggested model reveals a transitional interval, \(0.1 < {\rm Ri} < 1\) , which separates two regimes of essentially different nature but both turbulent: strong turbulence at \({\rm Ri} \ll 1\) ; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at \({\rm Ri} > 1\) . Predictions from this model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulation and large-eddy simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal A, Djenidi L, Antobia RA (2004) URL http://in3.dem.ist.utl.pt/lxlaser2004/pdf/paper_28_1.pdf

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105:221–252

    Article  Google Scholar 

  • Baumert HZ, Peters H (2005) A novel two equation turbulence closure model for high Reynolds numbers. Part A: homogeneous, non-rotating, stratified shear layers. In: Baumert HZ, Simpson JH, Sündermann J (eds) Marine turbulence. theory, observations and models. Cambridge University Press, pp 14–30

  • Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, KhairoudinovM, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) Anintercomparison of large eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118:247–272

  • Bertin F, Barat J, Wilson R (1997) Energy dissipation rates, eddy diffusivity, and the Prandtl number: an in situ experimental approach and its consequences on radar estimate of turbulent parameters. Radio Sci 32:791–804

    Article  Google Scholar 

  • Canuto VM, Minotti F (1993) Stratified turbulence in the atmosphere and oceans: a new sub-grid model. J Atmos Sci 50:1925–1935

    Article  Google Scholar 

  • Canuto VM, Howard A, Cheng Y, Dubovikov MS (2001) Ocean turbulence. Part I: one-point closure model - momentum and heat vertical diffusivities. J Phys Oceanogr 31:1413–1426

    Article  Google Scholar 

  • Cheng Y, Canuto VM, Howard AM (2002) An improvedmodel for the turbulent PBL. J Atmosph Sci 59:1550– 1565

    Article  Google Scholar 

  • Churchill SW (2002) A reinterpretation of the turbulent Prandtl number. Ind Eng Chem Res 41:6393–6401

    Article  Google Scholar 

  • Cuxart J, 23 co-authors (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118:273–303

    Google Scholar 

  • Dalaudier F, Sidi C (1987) Evidence and interpretation of a spectral gap in the turbulent atmospheric temperature spectra. J Atmos Sci 44:3121–3126

    Article  Google Scholar 

  • Elperin T, Kleeorin N, Rogachevskii I (1996) Isotropic and anisotropic spectra of passive scalar fluctuations in turbulent fluid flow. Phys Rev E 53:3431–3441

    Article  Google Scholar 

  • Elperin T, Kleeorin N, Rogachevskii I, Zilitinkevich S (2002) Formation of large-scale semi-organized structures in turbulent convection. Phys Rev E 66:066305 (1–15)

    Google Scholar 

  • Elperin T, Kleeorin N, Rogachevskii I, Zilitinkevich S (2006) Turbulence and coherent structures in geophysical convection. Boundary-Layer Meteorol 119:449–472

    Article  Google Scholar 

  • Esau IN, Zilitinkevich SS (2006) Universal dependences between turbulent and mean flowparameters in stably and neutrally stratified planetary boundary layers. Nonlin Proce Geophys 13:135–144

    Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Hanazaki H, Hunt JCR (1996) Linear processes in unsteady stably stratified turbulence. J Fluid Mech 318:303– 337

    Article  Google Scholar 

  • Hanazaki H, Hunt JCR (2004) Structure of unsteady stably stratified turbulence with mean shear. J Fluid Mech 507:1–42

    Article  Google Scholar 

  • Hunt JCR, Kaimal JC, Gaynor JE (1985) Some observations of turbulence in stable layers. Quart J Roy Meteorol Soc 111:793–815

    Article  Google Scholar 

  • Hunt JCR, Stretch DD, Britter RE (1988) Length scales in stably stratified turbulent flows and their use in turbulence models. In: Puttock JS (ed) Proc. I.M.A. Conference on “Stably Stratified Flow and Dense Gas Dispersion” Clarendon Press, pp 285–322

  • Holton JR (2004) An introduction to dynamic meteorology. Academic Press, New York 535 pp

    Google Scholar 

  • Jacobitz FG, Rogers MM, Ferziger JH (2005) Waves in stably stratified turbulent flow. J Turbulence 6:1–12

    Article  Google Scholar 

  • Jin LH, So RMC, Gatski TB (2003) Equilibrium states of turbulent homogeneous buoyant flows. J Fluid Mech 482:207–233

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Oxford University Press, New York, 289 pp

    Google Scholar 

  • Keller K, Van Atta CW (2000) An experimental investigation of the vertical temperature structure of homogeneous stratified shear turbulence. J Fluid Mech 425:1–29

    Article  Google Scholar 

  • Kraus EB, Businger JA (1994) Atmosphere-ocean interaction. Oxford University Press, Oxford 362 pp

    Google Scholar 

  • Kolmogorov AN (1941) Energy dissipation in locally isotropic turbulence. Doklady AN SSSR 32(1):19–21

    Google Scholar 

  • Kondo J, Kanechika O,Yasuda N (1978) Heat andmomentum transfer under strong stability in the atmospheric surface layer. J Atmos Sci 35:1012–1021

    Article  Google Scholar 

  • Kurbatsky AF (2000) Lectures on turbulence. Novosibirsk State University Press, Novosibirsk

    Google Scholar 

  • Luyten PJ, Carniel S, Umgiesser G (2002) Validation of turbulence closure parameterisations for stably stratified flows using the PROVESS turbulence measurements in the North Sea. J Sea Research 47:239–267

    Article  Google Scholar 

  • L’vov VS, Pomyalov A, Procaccia I, Zilitinkevich SS (2006) Phenomenology of wall bounded Newtonian turbulence. Phys Rev E 73:016303, 1–13

    Google Scholar 

  • Mahrt L, Vickers D (2005) Boundary layer adjustment over small-scale changes of surface heat flux. Boundary- Layer Meteorol 116:313–330

    Article  Google Scholar 

  • Mauritsen T, Svensson G (2007) Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J Atmos Sci 64:645–655

    Article  Google Scholar 

  • Mauritsen T, Svensson G, Zilitinkevich SS, Esau E, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci (In press)

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  • Moser RG, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re=590. Phys Fluids 11:943–945

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Main characteristics of the turbulent mixing in the atmospheric surface layer. Trudy Geophys Inst AN SSSR 24(151):153–187

    Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics. Vol 1. MIT Press, Cambridge Massachusetts, 769 pp

    Google Scholar 

  • Ohya Y (2001) Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol 98:57–82

    Article  Google Scholar 

  • Ozmidov RV (1990) Diffusion of contaminants in the ocean. Kluwer Academic Publishers, Dordrecht The Netherlands, 283 pp

    Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc 83:555–581

    Article  Google Scholar 

  • Rehmann CR, Hwang JH (2005) Small-scale structure of strongly stratified turbulence. J Phys Oceanogr 32:154–164

    Google Scholar 

  • Rehmann CR, Koseff JR (2004) Mean potential energy change in stratified grid turbulence Dynamics Atmospheres Oceans. 37:271–294

    Article  Google Scholar 

  • Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proc Roy Soc London A 97:354– 373

    Article  Google Scholar 

  • Rohr JJ, Itsweire EC, Helland KN, Van Atta CW (1988) Growth and decay of turbulence in a stably stratified shear flow. J Fluid Mech 195:77–111

    Article  Google Scholar 

  • Rotta JC (1951) Statistische theorie nichthomogener turbulenz. Z Physik 129:547–572

    Article  Google Scholar 

  • Schumann U, Gerz T (1995) Turbulent mixing in stably stratified sheared flows. J App Meteorol 34:33–48

    Article  Google Scholar 

  • Shih LH, Koseff JR, Ferziger JH, Rehmann CR (2000) Scaling and parameterization of stratified homogeneous turbulent shear flow. J Fluid Mech 412:1–20

    Article  Google Scholar 

  • Strang EJ, Fernando HJS (2001) Vertical mixing and transports through a stratified shear layer. J Phys Oceanogr 31:2026–2048

    Article  Google Scholar 

  • Stretch DD, Rottman JW, Nomura KK, Venayagamoorthy SK (2001) Transient mixing events in stably strati- fied turbulence, In: 14thAustralasian FluidMechanics Conference:Adelaide, Australia, 10–14 December 2001

  • Umlauf L (2005) Modelling the effects of horizontal and vertical shear in stratified turbulent flows. Deep-Sea Res 52:1181–1201

    Article  Google Scholar 

  • Umlauf L, Burchard H (2005) Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Continental Shelf Res 25:725–827

    Google Scholar 

  • Uttal T, Curry JA, McPhee MG, Perovich DK, 24 other co-authors (2002) Surface Heat Budget of the Arctic Ocean. Bull Amer Meteorol Soc 83:255–276

  • Weng W, Taylor P (2003) On modelling the one-dimensional Atmospheric Boundary Layer. Boundary-Layer Meteoro, present volume 107:371–400

    Article  Google Scholar 

  • Zilitinkevich S (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Quart J Roy Meteorol Soc 128:913–925

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2005) Resistance and heat/mass transfer laws for neutral and stable planetary boundary layers: old theory advanced and re-evaluated. Quart J Roy Meteorol Soc 131:1863–1892

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layers. Boundary-Layer Meteorol (In press, present volume)

  • Zilitinkevich SS, Perov VL, King JC (2002) Near-surface turbulent fluxes in stable stratification: calculation techniques for use in general circulation models. Quart J Roy Meteorol Soc 128:1571–1587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Zilitinkevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilitinkevich, S.S., Elperin, T., Kleeorin, N. et al. Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125, 167–191 (2007). https://doi.org/10.1007/s10546-007-9189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9189-2

Keywords

Navigation