Skip to main content
Log in

On Stability and Instability of \(C^{1,\alpha }\) Singular Solutions to the 3D Euler and 2D Boussinesq Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Singularity formation of the 3D incompressible Euler equations is known to be extremely challenging (Majda and Bertozzi in Vorticity and incompressible flow, Cambridge University Press, Cambridge, vol 27, 2002; Gibbon in Physica D 237(14):1894–1904, 2008; Kiselev, in: Proceedings of the international congress of mathematicians, vol 3, 2018; Drivas and Elgindi in EMS Surv Math Sci 10(1):1–100, 2023; Constantin in Bull Am Math Soc 44(4):603–621, 2007). In Elgindi (Ann Math 194(3):647–727, 2021) (see also Elgindi et al. in Camb J Math 9(4), 2021), Elgindi proved that the 3D axisymmetric Euler equations with no swirl and \(C^{1,\alpha }\) initial velocity develops a finite time singularity. Inspired by Elgindi’s work, we proved that the 3D axisymmetric Euler and 2D Boussinesq equations with \(C^{1,\alpha }\) initial velocity and boundary develop a stable asymptotically self-similar (or approximately self-similar) finite time singularity (Chen and Hou in Commun Math Phys 383(3):1559–1667, 2021) in the same setting as the Hou-Luo blowup scenario (Luo and Hou in Proc Natl Acad Sci 111(36):12968–12973, 2014; Luo and Hou in SIAM Multiscale Model Simul 12(4):1722–1776, 2014). On the other hand, the authors of Vasseur and Vishik (Commun Math Phys 378(1):557–568, 2020) and Lafleche et al. (Journal de Mathématiques Pures et Appliquées 155:140–154, 2021) recently showed that blowup solutions to the 3D Euler equations are hydrodynamically unstable. The instability results obtained in Vasseur and Vishik (2020) and Lafleche et al. (2021) require some strong regularity assumption on the initial data, which is not satisfied by the \(C^{1,\alpha }\) velocity field. In this paper, we generalize the analysis of Elgindi (Ann Math 194(3):647–727, 2021), Chen and Hou (Commun Math Phys 383(3):1559–1667, 2021), Vasseur and Vishik (2020) and Lafleche et al. (2021) to show that the blowup solutions of the 3D Euler and 2D Boussinesq equations with \(C^{1,\alpha }\) velocity are unstable under the notion of stability introduced in Vasseur and Vishik (2020) and Lafleche et al. (2021). These two seemingly contradictory results reflect the difference of the two approaches in studying the stability of 3D Euler blowup solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Biasi, A.: Self-similar solutions to the compressible Euler equations and their instabilities. Commun. Nonlinear Sci. Numer. Simul. 103, 106014 (2021)

    Article  MathSciNet  Google Scholar 

  3. Buckmaster, T., Shkoller, S., Vicol, V.: Formation of shocks for 2D isentropic compressible Euler. Commun. Pure Appl. Math. 75(9), 2069–2120 (2022)

  4. Buckmaster, T., Shkoller, S., Vicol, V.: Formation of point shocks for 3d compressible Euler. Commun. Pure Appl. Math. 76(9), 2073–2191 (2023)

    Article  MathSciNet  Google Scholar 

  5. Chen, J.: Singularity formation and global well-posedness for the generalized Constantin–Lax–Majda equation with dissipation. Nonlinearity 33(5), 2502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, J.: On the regularity of the De gregorio model for the 3D Euler equations. To appear in J. Eur. Math. Soc., arXiv preprint arXiv:2107.04777, (2021)

  7. Chen, J.: On the slightly perturbed De Gregorio model on \(S^1\). Arch. Ration. Mech. Anal. 241(3), 1843–1869 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chen, J.: Remarks on the smoothness of the \( {C}^{1,\alpha }\) asymptotically self-similar singularity in the 3D Euler and 2D Boussinesq equations. arXiv preprint arXiv:2309.00150, (2023)

  9. Chen, J., Hou, T.Y.: Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data II: Rigorous numerics. arXiv preprint: arXiv:2305.05660 [math.AP]

  10. Chen, J., Hou, T.Y.: Finite time blowup of 2D Boussinesq and 3D Euler equations with \({C}^{1,\alpha }\) velocity and boundary. arXiv:1910.00173, (2019)

  11. Chen, J., Hou, T.Y.: Finite time blowup of 2D Boussinesq and 3D Euler equations with \({C}^{1,\alpha }\) velocity and boundary. Commun. Math. Phys. 383(3), 1559–1667 (2021)

    Article  ADS  Google Scholar 

  12. Chen, J., Hou, T.Y.: On stability and instability of \( {C}^{1,\alpha } \) singular solutions to the 3D Euler and 2D Boussinesq equations. arXiv preprint arXiv:2206.01296, (2022)

  13. Chen, J., Hou, T.Y.: Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data I: analysis. arXiv preprint: arXiv:2210.07191v3 [math.AP], (2022)

  14. Chen, J., Hou, T.Y.: Correction to: Finite time blowup of 2D Boussinesq and 3D Euler equations with \(c^{1,\alpha }\) velocity and boundary. Commun. Math. Phys. 399(1), 573–575 (2023)

    Article  ADS  Google Scholar 

  15. Chen, J., Hou, T.Y., Huang, D.: On the Finite Time Blowup of the De Gregorio Model for the 3D Euler Equations. Commun. Pure Appl. Math. 74(6), 1282–1350 (2021)

    Article  MathSciNet  Google Scholar 

  16. Chen, J., Hou, T.Y., Huang, D.: Asymptotically self-similar blowup of the Hou–Luo model for the 3D Euler equations. Ann. PDE 8(2), 24 (2022)

    Article  MathSciNet  Google Scholar 

  17. Choi, K., Hou, T.Y., Kiselev, A., Luo, G., Sverak, V., Yao, Y.: On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations. CPAM 70(11), 2218–2243 (2017)

    Google Scholar 

  18. Choi, K., Kiselev, A., Yao, Y.: Finite time blow up for a 1D model of 2D Boussinesq system. Commun. Math. Phys. 334(3), 1667–1679 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Collot, C., Ghoul, T.-E., Masmoudi, N.: Singularity formation for Burgers’ equation with transverse viscosity. In: Annales scientifiques de l’École Normale Supérieure, volume 55, (2022)

  20. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)

    Article  MathSciNet  Google Scholar 

  21. Córdoba, D., Martínez-Zoroa, L.: Blow-up for the incompressible 3D-Euler equations with uniform \(c^{1,1/2-\epsilon } \cap l^2\) force. arXiv preprint arXiv:2309.08495, (2023)

  22. Cordoba, D., Martinez-Zoroa, L., Zheng, F.: Finite time singularities to the 3D incompressible Euler equations for solutions in \({C}^{1,\alpha } \cap {C}^{\infty }({R}^3 \backslash \{ 0 \} ) \cap {L}^2\). arXiv preprint arXiv:2308.12197, (2023)

  23. De Gregorio, S.: On a one-dimensional model for the three-dimensional vorticity equation. J. Stat. Phys. 59(5–6), 1251–1263 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  24. De Gregorio, S.: A partial differential equation arising in a 1D model for the 3D vorticity equation. Math. Methods Appl. Sci. 19(15), 1233–1255 (1996)

    Article  MathSciNet  Google Scholar 

  25. Drivas, T.D., Elgindi, T.M.: Singularity formation in the incompressible Euler equation in finite and infinite time. EMS Surv. Math. Sci. 10(1), 1–100 (2023)

    Article  MathSciNet  Google Scholar 

  26. Elgindi, T.M.: Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \({\mathbb{R} }^3\). Ann. Math. 194(3), 647–727 (2021)

    Article  MathSciNet  Google Scholar 

  27. Elgindi, T.M, Ghoul, T.-E., Masmoudi, N.: On the stability of self-similar blow-up for \( {C}^{1,\alpha } \) solutions to the incompressible Euler equations on \({\mathbb{R}}^3\). Camb. J. Math. 9(4), 1035–1075 (2021)

  28. Elgindi, T.M., Ghoul, T., Masmoudi, N.: Stable self-similar blow-up for a family of nonlocal transport equations. Anal. PDE 14(3), 891–908 (2021)

    Article  MathSciNet  Google Scholar 

  29. Elgindi, T.M., Jeong, I.-J.: Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations. Ann. PDE 5(2), 1–51 (2019)

    Article  MathSciNet  Google Scholar 

  30. Elgindi, T.M., Jeong, I.-J.: On the effects of advection and vortex stretching. Arch. Ration. Mech. Anal. 235(3), 1763–1817 (2019)

  31. Elgindi, T.M., Jeong, I.-J.: Finite-time singularity formation for strong solutions to the Boussinesq system. Ann. PDE 6, 1–50 (2020)

    Article  MathSciNet  Google Scholar 

  32. Elgindi, T.M, Pasqualotto, F.: From instability to singularity formation in incompressible fluids. arXiv preprint arXiv:2310.19780, (2023)

  33. Elgindi, T.M, Pasqualotto, F.: Invertibility of a linearized boussinesq flow: a symbolic approach. arXiv preprint arXiv:2310.19781, (2023)

  34. Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. In: Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 14, pp. 187–209. Elsevier (1997)

  35. Friedlander, S., Vishik, M.M.: Dynamo theory, vorticity generation, and exponential stretching. Chaos Interdiscip. J. Nonlinear Sci. 1(2), 198–205 (1991)

    Article  MathSciNet  Google Scholar 

  36. Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66(17), 2204 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  37. Gibbon, J.D.: The three-dimensional Euler equations: Where do we stand? Physica D 237(14), 1894–1904 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. Hou, T.Y.: Potential singularity of the \(3\)D Euler equations in the interior domain. Found. Comput. Math. 23, 2203–2249 (2023)

    Article  MathSciNet  Google Scholar 

  39. Hou, T.Y.: The potentially singular behavior of the \(3\)D Navier–Stokes equations. Found. Comput. Math. 23, 2251–2299 (2023)

    Article  MathSciNet  Google Scholar 

  40. Hou, T.Y., Huang, D.: A potential two-scale traveling wave singularity for 3D incompressible Euler equations. Phys. D Nonlinear Phenomena. 435, 133257 (2022)

    Article  MathSciNet  Google Scholar 

  41. Inoue, A., Miyakawa, T.: On the existence of solutions for linearized Euler’s equation. 282–285 (1979)

  42. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  43. Kiselev, A., Ryzhik, L., Yao, Y., Zlatoš, A.: Finite time singularity for the modified SQG patch equation. Ann. Math. 909–948 (2016)

  44. Kiselev, A., Sverak, V.: Small scale creation for solutions of the incompressible two dimensional Euler equation. Ann. Math. 180, 1205–1220 (2014)

    Article  MathSciNet  Google Scholar 

  45. Kiselev, A.: Small scales and singularity formation in fluid dynamics. In: Proceedings of the International Congress of Mathematicians, vol. 3 (2018)

  46. Lafleche, L., Vasseur, A.F., Vishik, M.: Instability for axisymmetric blow-up solutions to incompressible Euler equations. Journal de Mathématiques Pures et Appliquées 155, 140–154 (2021)

    Article  MathSciNet  Google Scholar 

  47. Landman, M.J., Papanicolaou, G.C., Sulem, C., Sulem, P.-L.: Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38(8), 3837–3843 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  48. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids A 3(11), 2644–2651 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  49. Luo, G., Hou, T.Y.: Toward the finite-time blowup of the 3D incompressible Euler equations: a numerical investigation. SIAM Multiscale Model. Simul. 12(4), 1722–1776 (2014)

    Article  MathSciNet  Google Scholar 

  50. Luo, G., Hou, T.Y.: Potentially singular solutions of the 3D axisymmetric Euler equations. Proc. Natl. Acad. Sci. 111(36), 12968–12973 (2014)

    Article  ADS  Google Scholar 

  51. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  52. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical generalized Korteweg–de Vries equation. I. Dynamics near the soliton. Acta Math. 212(1), 59–140 (2014)

    Article  MathSciNet  Google Scholar 

  53. Masmoudi, N., Zaag, H.: Blow-up profile for the complex Ginzburg–Landau equation. J. Funct. Anal. 255(7), 1613–1666 (2008)

    Article  MathSciNet  Google Scholar 

  54. McLaughlin, D.W., Papanicolaou, G.C., Sulem, C., Sulem, P.-L.: Focusing singularity of the cubic Schrödinger equation. Phys. Rev. A 34(2), 1200 (1986)

    Article  ADS  Google Scholar 

  55. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 157–222 (2005)

  56. Merle, F., Raphaël, P., Rodnianski, I., Szeftel, J.: On blow up for the energy super critical defocusing nonlinear Schrödinger equations. Invent. Math. 227(1), 247–413 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  57. Merle, F., Raphaël, P., Rodnianski, I., Szeftel, J.: On the implosion of a compressible fluid II: singularity formation. Ann. Math. 196(2), 779–889 (2022)

    Article  MathSciNet  Google Scholar 

  58. Merle, F., Zaag, H.: Stability of the blow-up profile for equations of the type \(u_t= { \Delta u } + | u|^{ p- 1} u \). Duke Math. J. 86(1), 143–195 (1997)

    Article  MathSciNet  Google Scholar 

  59. Merle, F., Zaag, H.: On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Commun. Math. Phys. 333(3), 1529–1562 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  60. Oh, S.-J., Pasqualotto, F.: Gradient blow-up for dispersive and dissipative perturbations of the burgers equation. arXiv preprint arXiv:2107.07172, (2021)

  61. Okamoto, H., Sakajo, T., Wunsch, M.: On a generalization of the Constantin–Lax–Majda equation. Nonlinearity 21(10), 2447–2461 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  62. Plecháč, P., Šverák, V.: On self-similar singular solutions of the complex Ginzburg–Landau equation. Commun. Pure Appl. Math. 54(10), 1215–1242 (2001)

    Article  MathSciNet  Google Scholar 

  63. Shao, R., Zhang, P.: On the instability of the possible blow-up solutions to 2D Boussinesq system. J. Differ. Equ. 306, 547–568 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  64. Vasseur, A.F., Vishik, M.: Blow-up solutions to 3D Euler are hydrodynamically unstable. Commun. Math. Phys. 378(1), 557–568 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. Vishik, M.: Spectrum of small oscillations of an ideal fluid and Lyapunov exponents. J. Math. Pures Appl. (9) 75(6), 531–557 (1996)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was in part supported by NSF Grants DMS-1907977 and DMS- 1912654, and the Choi Family Gift Fund. We would like to thank Professors Tarek Elgindi, Sasha Kiselev, Vladimir Sverak and Yao Yao for their constructive comments on an earlier version of our paper and for bringing to our attention several relevant references. We are also grateful to the referees for their constructive comments on the original manuscript, which improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajie Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this paper.

Additional information

Communicated by Alexandru Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Review of the Construction of Unstable Solutions

We provide a brief review of the construction of the unstable solution in [46, 64] via a WKB expansion and explain the connections among the WKB expansion, the bicharacteristics-amplitude ODE system (3.6)–(3.8), and the growth of the unstable solution.

1.1 Construction of the approximate solution

Suppose that \({\textbf{u}}(t, x)\) is a singular solution of (1.1). Denote by \(\gamma _t(x)\) the flow map

$$\begin{aligned} \frac{d}{dt} \gamma _t(x) = {\textbf{u}}( t, \gamma _t(x)), \quad \gamma _0(x) = x. \end{aligned}$$
(A.1)

The main idea in [64] is to construct an approximate solution to (1.2) using a WKB expansion

$$\begin{aligned} v(t, x) \approx b(t, x) \exp ( \frac{ i S(t, x)}{\varepsilon } ) \end{aligned}$$
(A.2)

for sufficiently small \(\varepsilon \) and the characteristics of the flow, where \(b(t, x) \in {\mathbb {R}}^3\) and S is a scalar. Plugging the above ansatz into (1.2), we obtain

$$\begin{aligned} R_{\varepsilon } = ( \partial _t + {\textbf{u}}\cdot \nabla + \nabla {\textbf{u}}) v = \frac{i}{\varepsilon }( \partial _t + {\textbf{u}}\cdot \nabla ) S \cdot b e^{ iS / \varepsilon } + ( \partial _t + {\textbf{u}}\cdot \nabla + \nabla {\textbf{u}}) b \cdot e^{i S / \varepsilon }, \end{aligned}$$

where \( (\nabla {\textbf{u}}) f = f \cdot \nabla {\textbf{u}}= f_j \partial _j u_i e_i \). To eliminate the \(O(\varepsilon ^{-1})\) term, one requires

$$\begin{aligned} (\partial _t + {\textbf{u}}\cdot \nabla ) S =0. \end{aligned}$$
(A.3)

Then we can rewrite \(R_{\varepsilon }\) as follows

$$\begin{aligned} R_{\varepsilon } = (\partial _t + {\textbf{u}}\cdot \nabla + \nabla {\textbf{u}}) b \cdot e^{ i S/ \varepsilon } \triangleq F(t, x) \cdot e^{ i S/ \varepsilon } , \quad F \triangleq (\partial _t + {\textbf{u}}\cdot \nabla + \nabla {\textbf{u}}) b . \end{aligned}$$
(A.4)

An important observation in [64] is that for high frequency oscillation, i.e. small \(\varepsilon \), the pressure term in (1.2) is almost local. We would like to construct (vQ) such that

$$\begin{aligned} R_{\varepsilon } = F(t, x) e^{i S/ \varepsilon } = \nabla Q + E_{\varepsilon }, \end{aligned}$$

where \(E_{\varepsilon }\) is a small error term. This is possible since Q is one order more regular than a highly oscillatory function \(F(t, x) e^{i S / \varepsilon }\). By integration and exploiting the cancellation, Q can be of order \(O(\epsilon )\). In fact, taking \(\nabla \times \) on both sides, we obtain

$$\begin{aligned} \nabla \times R_{\varepsilon } = ( \nabla \times F) e^{i S / \varepsilon } + \frac{i}{\varepsilon } (\nabla S \times F) e^{i S / \varepsilon } = \nabla \times ( \nabla Q + E_{\varepsilon } ) = \nabla \times E_{\varepsilon }. \end{aligned}$$

To eliminate the \(O(\varepsilon ^{-1})\) term, we require \(\nabla S \times F = 0\), which implies \(F = c(t, x) \nabla S \) for some scalar c(tx). In this case, one can construct the pressure Q as follows

$$\begin{aligned} Q = - i \varepsilon c(t, x) e^{i S / e}. \end{aligned}$$

As a result, the error is given by

$$\begin{aligned} E_{\varepsilon } = R_{\varepsilon } - \nabla Q = c \nabla S e^{i S / \varepsilon } + i \varepsilon \cdot \nabla c \cdot e^{i S / \varepsilon } + i \varepsilon c \frac{ i \nabla S}{\varepsilon } e^{iS / \varepsilon } = i \varepsilon \cdot \nabla c \cdot e^{i S / \varepsilon }. \end{aligned}$$
(A.5)

Suppose that c is smooth, then the \(L^p\) norm of the error \(E_{\varepsilon }\) is small as \(\varepsilon \rightarrow 0\).

From \(F = c(t, x) \nabla S\) and (A.4), we yield

$$\begin{aligned} ( \partial _t + {\textbf{u}}\cdot \nabla + \nabla {\textbf{u}}) b = F(t, x) = c(t, x) (\nabla S)( t, x). \end{aligned}$$

Using the Lagrangian coordinates and the flow map \(\gamma _t\) (A.1), we get

$$\begin{aligned} \partial _t b(t, \gamma _t(x)) = - ( \nabla {\textbf{u}}) b(t, \gamma _t(x)) + c(t, x) (\nabla S)(t, \gamma _t(x)). \end{aligned}$$

Denote

$$\begin{aligned} \xi _t( x) \triangleq (\nabla S)( t, \gamma _t(x)) , \quad b_t(x) \triangleq b(t, \gamma _t(x)) \;. \end{aligned}$$
(A.6)

The above equation reduces to

$$\begin{aligned} \frac{d}{dt} b_t = - (\nabla {\textbf{u}}) b_t + c(t, x) \xi _t . \end{aligned}$$
(A.7)

Next, we determine the equations for \(b, \xi \). In order for v(tx) to be incompressible, from the ansatz (A.2) and

$$\begin{aligned} \nabla \cdot v(t, x) = ( \nabla \cdot b ) e^{i S / \varepsilon } + \frac{i}{\varepsilon } b \cdot \nabla S e^{ i S /\varepsilon } \;, \end{aligned}$$

we require \( b(t, x) \cdot (\nabla S)(t, x) = 0\) to eliminate the \(O(\varepsilon ^{-1})\) term. In the Lagrangian coordinates, this condition is equivalent to enforcing

$$\begin{aligned} b(t, \gamma _t(x)) \cdot (\nabla S)( t, \gamma _t(x)) = b_t(x) \cdot \xi _t(x) = 0. \end{aligned}$$
(A.8)

Taking the gradient in the transport equation (A.3), we get

$$\begin{aligned} ( \partial _t + {\textbf{u}}\cdot \nabla ) \nabla S = - (\nabla {\textbf{u}})^T \nabla S. \end{aligned}$$

Using the Lagrangian coordinates and (A.6), we derive

$$\begin{aligned} \frac{d}{d t} \xi _t = \frac{d}{dt} (\nabla S)(t, \gamma _t(x)) = - (\nabla {\textbf{u}})^T (\nabla S )( t ,\gamma _t(x)) = - (\nabla {\textbf{u}})^T \xi _t. \end{aligned}$$
(A.9)

The incompressible condition (A.8) implies \( \frac{d}{dt} (b_t \cdot \xi _t ) = 0\). Thus, from (A.7) and (A.9), we get

$$\begin{aligned} \langle c(t, x) \xi _t, \xi _t \rangle - \langle (\nabla u) b_t, \xi _t \rangle - \langle (\nabla {\textbf{u}})^T \xi _t, b_t \rangle = 0, \end{aligned}$$

where \(\langle p, q \rangle = p_i q_i \). It follows that

$$\begin{aligned} c(t, x) = 2 \frac{ \xi _t^T ( \nabla {\textbf{u}}) b_t}{ | \xi _t|^2}. \end{aligned}$$

Thus, from (A.1),(A.7),(A.9), \(\gamma _t, \xi _t, b_t\) satisfy the bicharacteristics-amplitude ODE system (3.6)–(3.8) of (1.1) [46, 64]

The above derivation reveals the main idea behind the construction of an approximate solution to (1.2) in [64] and the relationship between the WKB expansion (A.2) and the bicharacteristics-amplitude ODEs (3.6)–(3.8). The last step is to localize the solution v(tx) to some trajectory and add a correction to v(tx) (A.2) so that it is incompressible. We refer to [64] for the details.

1.2 Growth of the solution

The solution v(tx) satisfies (1.2) up to an error similar to (A.5). Since \(E_{\varepsilon }\) contains the highly oscillatory phase \(e^{i S / \varepsilon }\), the error may not be small in \(C^{k, \alpha }\) or \(H^s\) norm. In [64], based on the WKB construction (A.2) and using the smallness of the error in the \(L^p\) norm, the authors constructed an approximate solution to (1.2) with error controlled by \(\varepsilon \). To prove the instability, they further showed the growth of v(tx). From (A.2), the growth of \(|| v||_p\) is due to \(|| b_t||_p\). The authors showed that if the velocity \({\textbf{u}}(t, x)\) is smooth, the system (3.6)–(3.8) satisfies the following conservations along the characteristic \(\gamma _t(x)\)

$$\begin{aligned} \begin{aligned} \omega (t, \gamma _t(x) ) \cdot \xi _t&= \omega _0(x) \cdot \xi _0, \quad b_t \cdot \xi _t = \tilde{b}_t \cdot \xi _t, \quad ( b_t \times \tilde{b}_t) \cdot \xi _t = (b_0 \times \tilde{b}_0) \cdot \xi _0, \end{aligned} \end{aligned}$$

where \(\omega = \nabla \times {\textbf{u}}\) is the vorticity of the blowup solution \({\textbf{u}}\), \( \xi _t, b_t, \tilde{b}_t\) are the solution to (3.6)–(3.8) with initial data \(x_0, \xi _0, b_0, \tilde{b}_0\), \( b_0 \cdot \xi _0 = \tilde{b}_0 \cdot \xi _0 = 0\) and \( b_0, \tilde{b}_0, \xi _0\) being linearly independent.

From the first and the third identity, formally, \( b_t \times \tilde{b}_t\) plays a role similar to \(\omega (t, \gamma _t(x))\). Indeed, using the above conservations, the authors further proved

$$\begin{aligned} || \omega (t, \cdot )||_{\infty } \le || \omega _0||_{L^{\infty }} \Big ( \sup _{ |b_0| = |\xi _0| = 1, x_0 \in \Omega , b_0 \cdot \xi _0 = 0} | b_t(x_0, \xi _0, b_0)| \Big )^2. \end{aligned}$$
(A.10)

According to the BKM blowup criterion, \(|| \omega (t)||_{\infty }\) must blowup, which leads to the growth of \(b_t\) and \(|| v(t)||_{L^p}\) and implies linear instability.

Appendix B. Embedding Inequalities and Estimates of Nonlinear Terms

We have the following estimates for different norms. The first and last inequality generalize Proposition 7.6 in [11]. The second inequality is exactly Proposition 7.7 in [11]. The third inequality in (B.1) generalizes Lemma 7.11 in [11]. Since the proof essentially uses the estimates in [11], we omit the proof here and refer it to Appendix B in the arXiv version of this paper [12].

Proposition B.1

Let \({{\mathcal {C}}}^k\) and \({{\mathcal {W}}}^{k,\infty }\) be the norms defined in (4.15) and (4.17). For \( k \ge 1\),

$$\begin{aligned} \begin{aligned} || f g||_{{{\mathcal {C}}}^k}&\lesssim || f||_{{{\mathcal {C}}}^k} || g||_{{{\mathcal {C}}}^k}, \quad || f g ||_{{{\mathcal {W}}}^{k,\infty }} \lesssim || f ||_{{{\mathcal {W}}}^{k,\infty }} || g||_{{{\mathcal {W}}}^{k, \infty }} , \\ || f||_{{{\mathcal {C}}}^{ k}}&\lesssim \alpha ^{-1/2} || f||_{ {{\mathcal {H}}}^{k+2}}, \quad || f||_{{{\mathcal {C}}}^k} \lesssim || \frac{1+R}{R} f ||_{{{\mathcal {W}}}^{k, \infty }}. \end{aligned} \end{aligned}$$
(B.1)

We have the following elliptic estimates for the stream function (4.10), (4.6).

Proposition B.2

Assume that \(\alpha \le \frac{1}{4}\) and \(\Omega \in {{\mathcal {H}}}^k, k \ge 3\). Let \(\Psi \) be the solution to (4.6) with boundary condition (4.7). Then we have

$$\begin{aligned} \begin{aligned}&\alpha ^2 || R^2 \partial _{RR} \Psi ||_{{{\mathcal {H}}}^k} + \alpha || R \partial _{R \beta } \Psi ||_{{{\mathcal {H}}}^k} +|| \partial _{\beta \beta } (\Psi - \frac{1}{\alpha \pi } \sin (2\beta ) L_{12}(\Omega )) ||_{{{\mathcal {H}}}^k} \lesssim _k || \Omega ||_{{{\mathcal {H}}}^k}. \end{aligned} \end{aligned}$$

The above estimate with \(k =3 \) has been established in [11]. The general case \(k \ge 3\) can be proved similarly. See also [26].

We have the following estimates for the velocity \({{\bar{u}}}\) of the approximate steady state.

Proposition B.3

For \(\alpha \le \frac{1}{4}\) and \(k \ge 5\), we have

$$\begin{aligned} \begin{aligned}&|| \frac{1+R}{ R} \partial _{\beta \beta } ( {\bar{\Psi }} - \frac{\sin (2\beta )}{\pi \alpha } L_{12}({\bar{\Omega }})) ||_{{{\mathcal {W}}}^{k+2,\infty }} \lesssim \alpha , \qquad || L_{12}({\bar{\Omega }})||_{{{\mathcal {W}}}^{k+2,\infty }} \lesssim \alpha , \\&\alpha || \frac{1+R}{R} D_R^2 {\bar{\Psi }} ||_{{{\mathcal {W}}}^{k,\infty }} + \alpha || \frac{1+R}{R} \partial _{\beta } D_R {\bar{\Psi }} ||_{{{\mathcal {W}}}^{k,\infty }} \\&\quad \quad + || \frac{1+R}{ R} \partial _{\beta \beta } ( {\bar{\Psi }} - \frac{\sin (2\beta )}{\pi \alpha } L_{12}({\bar{\Omega }})) ||_{{{\mathcal {W}}}^{k,\infty }} \lesssim \alpha \nonumber . \end{aligned} \end{aligned}$$

The case of \(k = 5\) has been proved in Proposition 7.8 [11]. The general case \(k \ge 5\) follows from a similar argument. See also [26].

Appendix C. Estimate of the Approximate Steady State

Recall from (4.4) that \({{\bar{\Omega }}}, {{\bar{\eta }}}, {{\bar{\xi }}}\) denote the approximate steady state \({{\bar{\omega }}}, {{\bar{\theta }}}_x, \bar{\theta }_y\) under the coordinates \((R, \beta )\), and the formula of \({\bar{\Omega }}, {\bar{\eta }}\) in (4.8).

$$\begin{aligned} {\bar{\Omega }} = \frac{\alpha }{c} \frac{3 R \Gamma (\beta ) }{(1+R)^2}, \quad {\bar{\eta }} = \frac{\alpha }{c} \frac{6 R \Gamma (\beta ) }{(1+R)^3} . \end{aligned}$$
(C.1)

We generalize Lemma A.6 in [11] from \(k \le 3\) to any k below.

Lemma C.1

The following results apply to any \( k \ge 0, 0 \le i + j \le k, j \ne 0\). (a) For \(f = {\bar{\Omega }}, {\bar{\eta }}, {\bar{\Omega }} - D_R {\bar{\Omega }}, {\bar{\eta }} - D_R {\bar{\eta }}\), we have

$$\begin{aligned} | D_R^k f | \lesssim _k f , \quad |D_R^i D^j_{\beta } f | \lesssim _k \alpha \sin (\beta ) f. \end{aligned}$$
(C.2)

Recall the \({{\mathcal {W}}}^{k, \infty }\) norm (4.17). We generalize Lemma A.7 in [11] from \(k = 7\) to any \(k \ge 7\).

Lemma C.2

For any \(k \ge 7\), it holds true that \(\Gamma (\beta ),{\bar{\Omega }}, {\bar{\eta }} \in {{\mathcal {W}}}^{k, \infty }\) with

$$\begin{aligned} \begin{aligned} ||\frac{(1+R)^2}{R} {\bar{\Omega }}||_{{{\mathcal {W}}}^{k,\infty }} + || \frac{(1+R)^2}{R}{\bar{\eta }} ||_{{{\mathcal {W}}}^{k,\infty }} \lesssim _k \alpha , \quad || D_{\beta } {\bar{\Omega }}||_{{{\mathcal {W}}}^{k,\infty }} + || D_{\beta }{\bar{\eta }} ||_{{{\mathcal {W}}}^{k,\infty }} \lesssim _k \alpha ^2. \end{aligned} \end{aligned}$$

Recall the \({{\mathcal {K}}}^k\) norm (4.15). We generalize Lemma A.8 in [11] from \(k= 5\) to any \(k \ge 5\) below.

Lemma C.3

Assume that \(0\le \alpha \le \frac{1}{1000}\). For \(R \ge 0, \beta \in [0, \pi /2], k \ge 1\) and \( i + j \le k\), we have

$$\begin{aligned}&| D^i_R D^j_{\beta } {\bar{\xi }} | \lesssim _k - {\bar{\xi }}, \quad | D^i_R D^j_{\beta } (3{\bar{\xi }} - R\partial _R {\bar{\xi }}) | \lesssim _k -{\bar{\xi }}, \\&|| {\bar{\xi }} ||_{{{\mathcal {C}}}^k} \lesssim || \frac{1+R}{R} ( 1 + ( R \sin ( 2 \beta )^{\alpha } )^{-\frac{1}{40} } ) {\bar{\xi }} ||_{L^{\infty }} \lesssim \alpha ^2, \end{aligned}$$

The proofs of Lemmas C.1C.3 follows from the argument in [11], and thus are omitted.

For the \(L_{12}\) operator (4.10), we generalize Lemma A.4 in [11] from \({{\mathcal {H}}}^3\) to its \({{\mathcal {H}}}^k\) version. The proof follows from a similar argument.

Lemma C.4

Let \(\chi (\cdot ): [0, \infty ) \rightarrow [0, 1]\) be a smooth cutoff function, such that \(\chi (R) = 1\) for \(R \le 1\) and \(\chi (R) = 0\) for \(R \ge 2\). For \( 0 \le k \le n, 0\le l \le n-1, n \ge 3\), we have

$$\begin{aligned} \begin{aligned}&|| L_{12}(\Omega ) - L_{12}(\Omega )(0) \chi ||_{{{\mathcal {H}}}^n} + || D_R( L_{12}(\Omega ) - L_{12}(\Omega )(0) \chi ) ||_{{{\mathcal {H}}}^n} \lesssim _n || \Omega ||_{{{\mathcal {H}}}^n}, \\&|| D^k_R L_{12}(\Omega ) ||_{\infty } + || D^k_R ( L_{12}(\Omega ) -\chi L_{12}(\Omega )(0)) ||_{\infty } \lesssim _n || \Omega ||_{{{\mathcal {H}}}^n}. \end{aligned} \end{aligned}$$
(C.3)

Appendix D. Derivation of \(u_r^r( 0,0)\)

We derive the formula (5.28) for \(u_r^r(0, 0)\) using the formula

$$\begin{aligned} {\textbf{u}}(x) = \nabla \times (-\Delta )^{-1} \omega = \frac{1}{4\pi } \int _{{\mathbb {R}}^3} \frac{\omega (y) \times (x- y)}{ |x-y|^3} dy. \end{aligned}$$

Recall the coordinates and change of variables (5.27)

$$\begin{aligned} \beta = \arctan ( z / r), \quad \rho = (r^2 + z^2)^{1/2}, \quad R = \rho ^{\alpha }, \quad \Omega (R, \beta ) = \omega ^{\vartheta }(\rho , \beta ), \end{aligned}$$

where \((r, \vartheta , z)\) is the cylindrical coordinates in \({\mathbb {R}}^3\) (3.1). Note that \(u_r^r(0,0) = -\frac{1}{2} u_z^z(0,0)\) (3.10), we compute \(u_z^z(0, 0)\). Since there is no swirl \(u^{\vartheta } \equiv 0\), we get

$$\begin{aligned}{} & {} \omega = \omega ^{\vartheta } e_{\vartheta } = ( - \omega ^{\vartheta } \sin \vartheta , \omega ^{\vartheta } \cos \vartheta , 0), \\{} & {} \quad ( \omega \times (x - y) )_3 = - \omega ^{\vartheta } \sin (\vartheta ) (x_2 - y_2 ) - \omega ^{\vartheta } \cos (\vartheta ) (x_1 - y_1). \end{aligned}$$

Since the above formula is independent of \(z= x_3\) and \(\omega ^{\vartheta }(y)\) is odd in \(y_3\), we yield

$$\begin{aligned} \partial _3 u^3 = \frac{1}{4\pi } \int _{{\mathbb {R}}^3} (\omega \times (x - y))_3 \partial _{x_3} \frac{1}{|x-y|^3} dy = \frac{1}{4\pi } \int _{{\mathbb {R}}^3} (\omega \times (x - y))_3 \frac{-3( x_3 - y_3)}{ |x-y|^5} dy. \end{aligned}$$

Evaluating at \(x = 0\) and using

$$\begin{aligned} ( \omega \times ( - y) )_3 = \omega ^{\vartheta }( y) \sin (\vartheta ) y_2 + \omega ^{\vartheta } \cos (\vartheta ) y_1, = \omega ^{\vartheta }(y) r \end{aligned}$$

and \(r = \rho \cos \beta , z = \rho \sin \beta , \beta \in [-\pi /2, \pi /2]\), we obtain

$$\begin{aligned} \begin{aligned} \partial _3 u^3(0, 0)&= \frac{3 }{4\pi } \int _{{\mathbb {R}}^3} \frac{\omega ^{\vartheta }(y) r y_3}{ |y|^5} d y = \frac{3}{4\pi } \int _0^{\infty }\int _0^{2\pi }\int _{{\mathbb {R}}} \frac{\omega ^{\vartheta }(y) r z }{ |y|^5} r d r d \vartheta d z \\&=\frac{3}{2} \int _{{\mathbb {R}}_+\times {\mathbb {R}}} \frac{\omega ^{\vartheta }(y) r^2 z }{ \rho ^5} d r d z \\&= \frac{3}{2} \int _0^{\infty } \int _{-\pi /2}^{\pi /2} \frac{\omega ^{\vartheta }(\rho , \beta ) \cos ^2(\beta ) \sin (\beta ) }{ \rho } d \rho d \beta \\&= 3 \int _0^{\infty } \int _{0}^{\pi /2} \frac{\omega ^{\vartheta }(\rho , \beta ) \cos ^2( \beta ) \sin (\beta ) }{ \rho } d \rho d \beta . \end{aligned} \end{aligned}$$

Using \(u_r^r(0,0) = -\frac{1}{2}u_z^z(0,0)\) (3.10) and \(\frac{ d \rho }{\rho } = \frac{1}{\alpha } \frac{dR}{R}\), we prove (5.28).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hou, T.Y. On Stability and Instability of \(C^{1,\alpha }\) Singular Solutions to the 3D Euler and 2D Boussinesq Equations. Commun. Math. Phys. 405, 112 (2024). https://doi.org/10.1007/s00220-024-04978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04978-9

Navigation