Skip to main content
Log in

Plasma membrane permeability as an indicator of salt tolerance in plants

  • Review
  • Published:
Biologia Plantarum

Abstract

There is evidence that the plasma membrane (PM) permeability alterations might be involved in plant salt tolerance. This review presents several lines of evidence demonstrating that PM permeability is correlated with salt tolerance in plants. PM injury and hence changes in permeability in salt sensitive plants is brought about by ionic effects as well as oxidative stress induced by salt imposition. It is documented that salinity enhances lipid peroxidation as well as protein oxidative damage, which in turn induces permeability impairment. PM protection, and thus retained permeability, in tolerant plants under salt imposition could be achieved through increasing antioxidative systems and thereby reducing lipid peroxidation and protein oxidative damage of PM. It appears that specific membrane proteins and/or lipids are constitutive or induced under salinity, which may contribute to maintenance of membrane structure and function in salt tolerant plant species. Furthermore, protecting agents (e.g., glycinebetaine, proline, polyamines, trehalose, sorbitol, mannitol) accumulated in salt tolerant species/cultivars may also contribute to PM stabilization and protection under salinity. Based on the presented evidence that PM permeability correlates with plant salt tolerance, we suggest that PM permeability is an easy and useful parameter for selection of genotypes of agriculture crops adapted to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EC:

electrical conductivity

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PEG:

polyethyleneglycol

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PM:

plasma membrane

ROS:

reactive oxygen species

References

  • Abdul Kader, M., Seidel, T., Golldack, D., Lindberg, S.; Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under salt stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. — J. exp. Bot. 57: 4257–4268, 2006.

    Article  CAS  Google Scholar 

  • Aghaei, K., Ehsanpour, A.A., Komatsu, S.: Potato responses to salt stress was mitigated by induced activity of antioxidant enzymes. — J. Integr. Plant Biol. 51: 1095–1103, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Pizarro, A., Gomes-Filho, E., De Lacerda, C., Alencar, N.L., Prisco, J.T.: Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings. — Plant Growth Regul. 59: 125–135, 2009.

    Article  CAS  Google Scholar 

  • Amtmann, A, Beilby, M.: The role of ion channels in plant salt tolerance. — In: Demidchik, V., Maathuis, F. (ed.): Ion Channels and Plant Stress responses. — Springer-Verlag, Berlin 2010.

    Google Scholar 

  • Arzani, A.: Improving salinity tolerance in crop plants: a biotechnological review. — In Vitro cell. dev. Biol. Plant 44; 373–383, 2008.

    Article  CAS  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycinebetaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Ashraf, M., Ali, Q.: Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). — Environ. exp. Bot. 63: 266–273, 2008.

    Article  CAS  Google Scholar 

  • Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27: 84–93, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Attia, H., Karray, N., Msilini, N., Lachaal, M.: Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. — Biol. Plant. 55; 159–163, 2011.

    Article  CAS  Google Scholar 

  • Avery, S.V.: Molecular targets of oxidative stress. — Biochem. J. 434: 201–210, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Bao, A.K., Wang, S., Wu, G., Xi, J., Zhang, J., Wang, C.; Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). — Plant Sci. 176: 232–240, 2009.

    Article  CAS  Google Scholar 

  • Bargmann, B.O., Laxalt, A., Riet, B., Schooten, B., Merquiol, E., Testerink, C., Haring, M., Bartels, D., Munnik, T.; Multiple PLDs required for high salinity tolerance and water deficit tolerance in plants. — Plant Cell Physiol. 50; 78–89, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ben Amor, N., Megiche, W., Jimenez, A., Sevilla, F., Abdelly, C.: The effect of calcium on the antioxidant systems in the halophyte Cakile maritima under salt stress. — Acta Physiol. Plant. 32: 453–461, 2010.

    Article  CAS  Google Scholar 

  • Bishop, D.G.: Functional role of plant membrane lipids. — In; Thomson, W.W., Mudd, J.B., Gibbs, M. (ed.): Biosynthesis and Function of Plant Lipids. Pp. 81–103. Univ. California, Riverside 1983.

    Google Scholar 

  • Bittisnich, D., Robinson, D., Whitecross, M.: Membrane-associated and intracellular free calcium levels in root cells under NaCl stress. — In: De Michelis, M., Marre, D., Rasi-Caldogno, S. (ed.): Plant Membrane Transport: the Current Position. Pp 681–683. Elsevier, Amsterdam 1989.

    Google Scholar 

  • Blits, K.C., Gallagher, J.L.: Effect of NaCl on lipid content of plasma membranes isolated from root and cell suspension of the dicot. Halophyte Kosteletzkya virginica L. Preal. — Plant Cell Rep. 9: 156–159, 1990.

    Article  CAS  Google Scholar 

  • Blumwald, E.: Sodium transport and salt tolerance in plants. — Curr. Opin. Cell Biol. 12: 431–434, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau, A., Azia, A., Larher, F., Martin-Tanguy, J.; Polyamines and environmental challenges: recent development. — Plant Sci. 140: 103–125, 1999.

    Article  CAS  Google Scholar 

  • Brown, D. J., DuPont, F.M.: Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum vulgaris L.). Effect of salt. — Plant Physiol. 90: 472–478, 1989.

    Article  Google Scholar 

  • Carruthers, A., Melchior, D.J.: How bilayer lipids affect membrane protein activity. — Trends Biochem. Sci. 11: 331–335, 1989.

    Article  Google Scholar 

  • Chen, T.H., Murata, N.: Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. — Plant Cell Environ. 34: 1–20, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Tracy, A.C., Zhou, M., Twomey, A., Naidu, B., Shabala, S.: Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. — J. exp. Bot. 58: 4245–4255, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Jagendrof, A., Zhu, J.K.: Understanding and improving salt tolerance in plants. — Crop Sci. 45: 437–448, 2005.

    Article  CAS  Google Scholar 

  • Collado, M., Arture, M., Aulicino, M., Molina, M.; Identification of salt tolerance in seedlings of maize (Zea mays L.) with the cell membrane stability trait. — Int. Res. J. Plant Sci. 5: 126–132, 2010.

    Google Scholar 

  • Cosentino, C., Fisher-Schliebs, E., Adam, B., Thiel, G., Homann, U.: Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystalinum. — New Phytol. 186: 669–680, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, R.C., Lauchli, A., Polito, V.S.: Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stsress? — Plant Physiol. 79: 207–211, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Cuin, T.A., Shabala, S.: Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stressinduced reactive oxygen species. — Plant Signal. Behav. 3; 207–218, 2008.

    Article  PubMed  Google Scholar 

  • Cullis, R.C., De Kruijf, B.: Lipid polymorphism and the functional roles of lipid in biological membranes. — Biochim. biophys. Acta 559: 399–420, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Daneshmand, F., Arvin, M.J., Kalantari, K.M.: Physiological responses to NaCl stress in three wild species of potato in vitro. — Acta Physiol. Plant. 32: 91–101, 2010.

    Article  CAS  Google Scholar 

  • Dias, A.S., Barreiro, M.G., Campos, P., Ramalho, J.C., Lidon, F.C.: Wheat cellular membrane thermotolerance under heat stress. — J. Agron. Crop Sci. 196: 100–108, 2010.

    Article  CAS  Google Scholar 

  • Douglas, T.J., Walker, R.P.: Phospholpids, free sterols and adenosine triphosphatase of plasma membrane-enriched preparations from roots of citrus genotypes differing in chloride exclusion ability. — Physiol. Plant. 62: 51–58, 1984.

    Article  CAS  Google Scholar 

  • Douglas, T.J.: NaCl effects on 4-desmethylsterol composition of plasma membrane enriched preparations from citrus roots. — Plant Cell Environ. 8: 687–692, 1985.

    Article  CAS  Google Scholar 

  • Dwivedi, R., Snehi, Y., Toshi, A., Qadar, E.: Membrane permeability in tetraploid and hexaploid wheats under salinity stress. — Curr. Sci. 50: 194–197, 1981.

    CAS  Google Scholar 

  • Farooq, S., Azam, F.: The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. — J. Plant Physiol. 163: 629–637, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T.J., Flowers, S.A.: Why does salinity pose such a difficult problem for plant breeders. — Agr. Water Manage. 78: 15–24, 2005.

    Article  Google Scholar 

  • Flowers, T.J., Galal, H.K., Bromhaml, M.: Evaluation of halophytes: multiple origins of salt tolerance in land plants. — Funct. Plant Biol. 37: 604–612, 2010.

    Article  Google Scholar 

  • Gagne, J., Stamatatos, L., Diacovo, T., Hui, S., Yeagel, P.L., Silvius, J.P.: Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamine. — Biochemistry 24: 4400–4408, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Gao, T., Gao, Q., Duan, X., Yue, G., Yang, A.F., Zhang, J.R.; Cloning of H+-PPase gene from Thellungiela halophila and its heterologous expression to improve tobacco salt tolerance. — J. exp. Bot. 57: 3259–3270, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Garg, A.K., Kim, J., Owens, T., Ranwala, A.P., Choi, Y., Kochian, L.V., Wu, R. J.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc. nat. Acad. Sci. USA 99: 15898–15903, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ghanti, S.K., Sujata, K.G., Kumar, B.M., Karba, N.N., Reddy, K.J.: Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. — Biol. Plant. 55: 634–640, 2011.

    Article  CAS  Google Scholar 

  • Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Goncalo, A., Filho, S., Ferreira, B. S., Dias, J., Queiroz, K., Branco, A.T., Bressan, R.A., Smith, D., Oliveira, J., Garcia, B.: Accumulation of SALT protein in rice plants as response to environmental stresses. — Plant Sci. 164: 623–628, 2003.

    Article  CAS  Google Scholar 

  • Hajlaoui, H., Denden, M., Elyeb, N.: Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) root. — Acta Physiol. Plant. 31: 33–34, 2009.

    Article  CAS  Google Scholar 

  • Hanson, A.D., Grumet, R.: Betaine accumulation: metabolic pathways and genetics. — In: Key, J.L., Kosuge, T. (ed.); Cellular and Molecular Biology of Plant Stress. Pp. 71–92. Alan Liss, New York 1985.

    Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, O., Mihara, M.: Characterization of membrane lipids of higher plants different in salt tolerance. — Agr. biol. Chem. 51: 3215–3221, 1987.

    Article  CAS  Google Scholar 

  • Hirshi, K.D.: The calcium conundrum. Both versital nutrient and specific signal. — Plant Physiol. 136: 2438–2442, 2004.

    Article  Google Scholar 

  • Hong, J.K., Hawang, B.K.: The promoter of the pepper pathogen-induced membrane gene CaPIMP1 mediates environmental stress responses in plants. — Planta 229: 249–259, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X.J., Zhang, Z., Xu, P., Fu, Z.Y., Hu, S. B., Song, W.Y.; Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 213–223, 2010.

    Article  CAS  Google Scholar 

  • Hurkman, W. J., Tanaka, C.K, DuPont, F.M.: The effects of salt stress on polypeptides in membrane fractions from barley roots. — Plant Physiol. 88: 1263–1273, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, P.C., John, J.B.: Changes in membrane lipids of roots associated with changes in permeability. 1. Effects of undissociated organic acids. — Plant Physiol. 66: 801–804, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, A., Ford, K., Kretschmer, J., Tester, M.: Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. — Plant Biotechnol. J. 9: 838–847, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kent, L.M., Lauchli, A.: Germination and seedling growth of cotton: salinity-calcium interaction. — Plant Cell Environ. 80: 651–654, 1985.

    Google Scholar 

  • Kerkeb, L., Donaire, J.P., Rodriguez-Rosales, M.P.: Plasma membrane H+-ATPase activity is involved in adaptation of tomato to NaCl. — Physiol. Plant. 111: 483–490, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M.H., Panda, S.K.: Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaC-salinity stress. — Acta Physiol. Plant. 30: 81–89, 2008.

    Article  CAS  Google Scholar 

  • Khan, M.S., Tawaraya, K., Sekimoto, H., Koyama, H., Kobayashi, Y., Mirayama, T., M. Chuba, Y. Shiono, M. Uemura, M. Kambayashi, S. Ishikawa, Wagatsuma, T.; Relative abundance of Δ5-sterol in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. — Physiol. Plant. 135: 73–83, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kholova, J., Sairam, R.K., Meena, R.C., Srivastava, G.S.; Response of maize genotypes to salinity stress in relation to osmolytes and metal ions contents, oxidative stress and antioxidant enzymes activity. — Biol. Plant. 53: 249–256, 2009.

    Article  CAS  Google Scholar 

  • Kholova, J., Sairam, R.K, Meena, R.C.: Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzyme activity as determinants of salinity stress tolerance in maize. — Acta Physiol. Plant. 32: 477–486, 2010.

    Article  CAS  Google Scholar 

  • Kononowicz, A.K., Raghothama, K.G., Casas, A., Nelson, N.K., Liu D., Narasimhan, M., LaRose, P.C., Singh, N.K., Bressan, R.A., Hasegawa, P.M.: Structural regulation and function of the osmotin gene. — In: Cherry, J.H. (ed.); Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. Pp. 381–413. Springer, Berlin 1994.

    Chapter  Google Scholar 

  • Kuiper, P.J.C.: Functioning of plant cell membranes under saline conditions. Membrane lipid composition and ATPases. — In: Staples, R.C., Toenniessen, G.H., (ed.); Salinity Tolerance in Plants. Pp. 77–91. Wiley, New York 1984.

    Google Scholar 

  • Lauchli, A.: Calcium, salinity and the plasma membrane. In; Leonard, R.T., Hepler, P.K. (ed.): Calcium in Plant Growth and Development. Pp. 26–35. Amer. Soc. Plant Physiol., Riverside 1990.

    Google Scholar 

  • Leopold, A.C., Willing, R.P.; Evidence for toxicity effects of salt on membranes. — In: Staples, R.C., Toenniessen, G.H. (ed.): Salinity Tolerance in Plants. Pp. 67–76. Wiley, New York 1984.

    Google Scholar 

  • Levitt, J.: Responses of plants to environmental stresses. Vol. 2, Water, Radiation, Salt and other Stresses. Academic Press, New York 1980.

    Google Scholar 

  • Maas, E.V., Nieman, R.H.: Physiology of plant tolerance to salinity. — In: Jung, G.E. (ed.): Crop Tolerance to Suboptimal Conditions. Pp. 277–299. Amer. Soc. Agron., Madison 1987.

    Google Scholar 

  • Magin, R.L., Niesman, M., Basic, G.: Influence of fluidity on membrane permeability: correspondence between studies of membrane models and simple biological systems. — In; Aloia, R.C., Curtain, J., Gordon, L.M. (ed.): Membrane Transport and Information Storage. Pp. 221–237. Liss Inc., New York 1990.

    Google Scholar 

  • Malik, S., Nayak, M., Sahu, B.B., Panigrahi, A.K., Shaw, B.P.; Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. — Biol. Plant. 55: 191–195, 2011.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F.: NaCl alteration of plasma membrane of Allium cepa epidermal cells. Alleviation by calcium. — J. Plant Physiol. 145: 726–730, 1995a.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F.: Changes in cell membrane permeability and lipid content of wheat root cortex cells induced by NaCl. — Biol. Plant. 37: 143–145, 1995b.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F.: Cell permeability under salt stress. — In; Jaiwal, P.K., Singh, R.P., Gulati, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 87–110. Science Publ., Enfield 1997.

    Google Scholar 

  • Mansour M.M.F.: Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. — Plant Physiol. Biochem. 36: 767–772, 1998.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F.: Nitrogen containing compounds and adaptation of plants to salinity stress. — Biol. Plant. 43: 491–500, 2000.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Al-Mutawa, M.M.: Stabilization of plasma membrane by polyamines against salt stress. — Cytobios 100: 7–17, 1999.

    CAS  Google Scholar 

  • Mansour, M.M.F., Al-Mutawa, M.M., Salama, K.H.A., Abou Hadid, A.F.: Salt acclimation of wheat salt sensitive cultivar by polyamines. — In: Ahmad, R., Malik, K.A. (ed.); Prospects for Saline Agriculture. Pp. 155–160. Kluwer, Dordrecht 2002a.

    Google Scholar 

  • Mansour, M.M.F., Al-Mutawa, M.M., Salama, K.H.A, Abou Hadid, A.F.: Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. — Biol. Plant. 45: 235–239, 2002b.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Lee-Stadelmann, O.Y., Stadelmann, E.J.; Salinity stress and cytoplasmic factors. A comparison of cell permeability and lipid partiality in salt sensitive and salt resistant cultivars and lines of Triticum aestivum and Hordeum vulgare. — Physiol. Plant. 88: 141–148, 1993.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Salama, K.H.A.: Comparative responses to salinity in wheat genotypes differing in salt tolerance. 2. Cell permeability, osmotic potential and cytoplasmic viscosity. — Egypt. J. Physiol. 20: 17–32, 1996.

    Google Scholar 

  • Mansour, M.M.F., Salama, K.H.A.: Cellular basis of salinity tolerance in plants. — Environ. Exp. Bot. 52: 113–122, 2004.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Salama, K.H.A., Al-Mutawa, M.M.; Transport proteins and salt tolerance in plants. — Plant Sci. 164: 891–900, 2003.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Stadelmann, E.J.: NaCl-induced changes in protoplasmic characteristics of Hordeum vulgare cultivars differing in salt tolerance. — Physiol. Plant. 91: 389–394, 1994.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Van Hasselt, P.R., Kuiper, P.J.C.: Plasma membrane lipid alterations induced by NaCl in winter wheat roots. — Physiol. Plant. 92: 473–478, 1994.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Van Hasselt, P.R., Kuiper, P.J.C.: Ca2+- and Mg2+-ATPase activities in winter wheat root plasma membranes as affected by NaCl stress during growth. — J. Plant Physiol. 153: 181–187, 1998.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Van Hasselt, P.R., Kuiper, P.J.C.: NaCl effects on root plasma membrane ATPase of salt tolerant wheat. — Biol. Plant. 43: 62–66, 2000.

    Google Scholar 

  • McElhaney, R.N., De Gier, J., Van der Neut-Kok, C.M.: The effect of alterations in fatty acid composition and cholesterol content on the nonelectrolyte permeability of Acholeplasma laidlawii B cells and derived liposomes. — Biochim. biophys. Acta 298: 169–175, 1973.

    Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R.: Plant salt tolerance. — In: Sunkar R. (ed.): Methods in Molecular Biology. Pp. 25–38. Springer, Berlin 2010.

    Google Scholar 

  • Munns, R., Termaat, A.: Whole plant response to salinity. — Aust. J. Plant Physiol. 13: 143–160, 1986.

    Article  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Norberg, P., Liljenberg, C.: Lipid of plasma membranes prepared from oat root cells. Effect of induced water-deficit tolerance. — Plant Physiol. 96: 1136–1141, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Olias, R., Eljakaoui, Z., Li J., Morales, P., Marin-Manzano, M., Pardo, J. Belver, A.: The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. — Plant Cell Environ. 32: 904–916, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Panda, S.K., Khan M.H.: Growth, oxidative damage and antioxidant responses in greengram (Vigna radiate L.) under short-term salinity stress and its recovery. — J. Agron. Crop Sci. 195: 442–454, 2009.

    Article  CAS  Google Scholar 

  • Poovaiah, B.W., Leopold, A.C.: Effects of inorganic salts on tissue permeability. — Plant Physiol. 40: 229–234, 1976.

    Google Scholar 

  • Qadir, M., Tubeilch, A, Akhtam, J., Larbi, A., Minhas, P., Khan, M.: Productivity enhancement of salt-affected environments through crop diversification. — Land Degradation Develop. 19: 429–453, 2008.

    Article  Google Scholar 

  • Qiu, N., Chen, M., Guo, J., Bao, H., Ma, X., Wang, B.; Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. — Plant Sci. 172: 1218–1225, 2007.

    Article  CAS  Google Scholar 

  • Quinn, P.J.: Models for adaptive changes in cell membranes. — Biochem. Soc. Trans. 11: 329–331, 1983.

    PubMed  CAS  Google Scholar 

  • Racagni, G., Pedranzani, A., Taleisnik, E., Abdala, G.: Effect of short-term salinity on lipid metabolism and ion accumulation in tomato roots. — Biol. Plant. 47: 373–377, 2003.

    Article  CAS  Google Scholar 

  • Rochester, C. P., Kjellbom, P., Larrson, C.: Lipid composition of plasma membranesfrom barley leaves and roots, spinach leaves and cauliflower inflorescences. — Physiol. Plant. 71; 257–263, 1987.

    Article  CAS  Google Scholar 

  • Roshandel, P., Flowers, T.: The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance. — Plant Soil 315: 135–147, 2009.

    Article  CAS  Google Scholar 

  • Russell, N.J.: Functions of lipids: structural roles and membrane functions. — In: Ratledge, C., Wilkinson, S.C. (ed.); Microbial Lipids. Pp. 279–365. Academic Press, London 1989.

    Google Scholar 

  • Sade, N., Gebretsadik, M., Seligmann, R., Schwartz, A., Wallach, R., Moshelion, M.: The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity and yield production under salt stress. — Plant Physiol. 152, 245–254, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R.K., Veerabhadra, R.K., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. — Plant Sci. 163: 1037–1046, 2002.

    Article  CAS  Google Scholar 

  • Salama, K.H.A.: Amelioration of NaCl-induced alterations on the plasma membrane of Allium cepa L. by ascorbic acid. — Aust. J. basic appl. Sci. 3: 990–994, 2009.

    CAS  Google Scholar 

  • Salama, K.H.A. Mansour, M.M.F., Ali, F.Z.M., Abou Hadid, A.F.: NaCl-induced changes in plasma membrane lipids and proteins of Zea mays L. cultivars in their response to salinity. — Acta Physiol. Plant. 29: 351–359, 2007.

    Article  CAS  Google Scholar 

  • Senadheera, P., Singh, R., Maathuis, F.J.: Differentially expressed membrane transporters in rice roots may contribute cultivar dependent salt tolerance. — J. exp. Bot. 60: 2553–2563, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., McKersie, B.D., Stinson, R.: Association between membrane phase properties and dehydration injury in soybean axes. — Plant Physiol. 76: 759–762, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, R., Mulet, J.M., Gabino, R., Maquez, J.A., de Larrinoa, I.F., Leube, M.P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., Montesinos C.: A glimpse of the mechanisms of ion homeostasis during salt stress. — J. exp. Bot. 50: 1023–1036, 1999.

    CAS  Google Scholar 

  • Shalata, A., Neumann, P.M.: Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. — J. exp. Bot. 52: 2207–2211, 2001.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M.: Membrane fluidity and cellular functions. — In; Shinitzky, M. (ed.): Physiology of Membrane Fluidity. Pp. 1–51. CRC Press, Boca Raton 1984.

    Google Scholar 

  • Simon, E.W.: Phospholipids and plant membrane permeability. — New Phtytol. 73: 377–420, 1974.

    Article  CAS  Google Scholar 

  • Singh, N.K., Bracken, C.A., Hasegawa, P.M., Handa, A.K., Buckel, S., Mermodoson, M.A., Pfankoch, F., Regnier, F., Bressan, R.A.: Characterization of osmotin. A thaumatinlike protein associated with osmotic adjustment in plant cells. — Plant Physiol. 85: 529–536, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Stadelmann, E.J., Lee-Stadelmann, O.Y.: Passive permeability. — Methods Enzymol. 174: 246–266, 1989.

    Article  CAS  Google Scholar 

  • Sung, D., Kaplan, F., Guy, C.: Plant HSP70 molecular chaperons: protein structure, gene family, expression and function. — Physiol. Plant. 85: 529–536, 1996.

    Google Scholar 

  • Surjus, A., Durand, M.: Lipid changes in soybean root membranes in response to salt treatment. — J. exp. Bot. 47; 17–23, 1996.

    Article  CAS  Google Scholar 

  • Takahashi, T., Kakehi, T.I.: Polyamines: ubiquitous polycations with unique roles in growth and stress responses. — Ann. Bot. 105: 1–6, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Tarchoune, I., Sgherric, C., Izzo, R., Lachaal, M., Ouerghi, Z., Navari-Izzo, F.: Antioxidative response of Ocimum basilicum to sodium chloride and sodium sulphate salinization. — Plant Physiol. Biochem. 48: 772–777, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Termaat, A., Pasioura, J.B., Munns, R.: Shoot turgor does not limit growth of NaCl affected wheat and barley. — Plant Physiol. 77: 869–872, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.E., Pauls, K., Chia, L.S, Sridhara, S.: Free radicalmediated changes in the organization of membrane lipid bilayers: a simulation of the effects of senescence. — In; Thomson W.W., Mudd J.B., Gibbs M. (ed.): Biosynthesis and Function of Plant Lipids. Pp. 173–194. Univ. California, Reverside 1983.

    Google Scholar 

  • Tiwari, J.K., Munshi, A., Kumar, R., Pandey, R.N., Arora, A., Bhat, J., Sureja, A.: Effect of salt stress on cucumber: Na+- K+ ratio, osmolyte concentration, phenols, chlorophyll content. — Acta Physiol. Plant. 32: 103–114, 2010.

    Article  CAS  Google Scholar 

  • Tuna, A.L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., Yagmur, B.: The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato grown under salt stress. — Environ. exp. Bot. 59: 173–178, 2009.

    Article  CAS  Google Scholar 

  • Uitert, I., Le Gac, S., Berg, A.: The influence of different membrane components on the electrical stability of bilayer lipid membranes. — Biochim. biophys. Acta 179: 21–31, 2010.

    Google Scholar 

  • Van Zoelen, E. J., De Jesus, C.H., De Jonge, E., Mulder, M., Block, M.C., De Gier, J.: Non-electrolyte permeability as a tool for studying membrane fluidity. — Biochem. biophys. Acta 511: 335–347, 1978.

    Article  PubMed  Google Scholar 

  • Vercesi, A.E., Kowaltowski, A., Grijalba, M., Meinicke, A.R., Castilho, R.F.: The role of reactive oxygen species in mitochondrial permeability transition. — Biosci. Rep. 17: 43–52, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Very, A.A., Sentenac, H.: Cation channels in the Arabidopsis plasma membrane. — Trends Plant Sci. 7: 168–175, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Kohler, B., Cao, F., Liu, L.: Molecular and physiological aspects of urea transport in higher plants. — Plant Sci. 175: 467–477, 2008.

    Article  CAS  Google Scholar 

  • Wassall, S.R., Stillwell, W.: Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. — Biochim. Biophys. Acta 1788: 24–32, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Winicov I.: New molecular approaches to improving salt tolerance in crop plants. — Ann. Bot. 82: 703–710, 1998.

    Article  CAS  Google Scholar 

  • Wu, J., Seliskar, D.M., Gallagher, J.L.: Stress tolerance in the march plant Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition. — Physiol. Plant. 102: 307–317, 1998.

    Article  CAS  Google Scholar 

  • Wu, J., Seliskar, D.M., Gallagher, J.L.: The response of plasma membrane lipid composition in callus of the halophyte, Spartina patens, to salinity stress. — Amer. J. Bot. 92: 852–858, 2005.

    Article  CAS  Google Scholar 

  • Yahya, A., Liljenberg, C., Nilsson, R., Lindberg, S., Banas, A.; Effects of pH and minerals nutrition supply on lipid composition and protein pattern of plasma membranes from sugar beet roots. — J. Plant Physiol. 146: 81–87, 1995.

    Article  CAS  Google Scholar 

  • Yang, F., Xiao, X., Zhang, S., Karpelainen, J.: Salt stress responses in Populus cathayana Rehder. — Plant Sci. 176; 667–677, 2009.

    Article  CAS  Google Scholar 

  • Zamani, S., Bybordi, A., Khorshidi, S., Nezami, T.: Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars. — Adv. environ. Biol. 4: 397–403, 2010.

    CAS  Google Scholar 

  • Zenoff, A.N., Hilal, M., Galo, M., Moreno, H.: Changes in lipid composition and inhibition of the extrusion of proton during salt stress in two genotypes of soybeanresistant or susceptible to salt stress. Varietal differences. — Plant Cell Physiol. 35: 729–735, 1994.

    CAS  Google Scholar 

  • Zhao, J., Guo, S., Chen, S., Zhang, H., Zhao, Y.: Expression of yeast YAP1 in transgenic Arabidopsis results in increased salt tolerance. — J. Plant Biol. 52: 56–64, 2009.

    Article  CAS  Google Scholar 

  • Zhang, J.S., Xie, C., Li, Z.Y., Chen, S.Y.: Expression of the plasma membrane ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. — Theor. appl. Genet. 99: 1006–1011, 1999.

    Article  CAS  Google Scholar 

  • Zhu, J.K.: Plant salt tolerance. — Trends Plant Sci. 6: 15–24, 2001.

    Google Scholar 

  • Zongli, W., Xiaozhong, L., Zhixia, W.: Physiological studies on salt tolerance in rice. II. Changes in plasmalemma permeability and its relation with membrane lipid peroxidation in leaves under salinity. — J. agr. Sci. 3: 1–9, 1987.

    Google Scholar 

  • Zwiazek, J.J., Shay, J.M.: The effect of sodium fluoride on cytoplasmic leakage and lipid and fatty acid composition of Jack pine (Pinus banksiana) seedlings. — Can.. J. Bot. 66; 535–541, 1988.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. F. Mansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, M.M.F. Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57, 1–10 (2013). https://doi.org/10.1007/s10535-012-0144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0144-9

Additional key words

Navigation