Skip to main content

Advertisement

Log in

Improving salinity tolerance in crop plants: a biotechnological view

  • Invited Reviews
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Salinity limits the production capabilities of agricultural soils in large areas of the world. Both breeding and screening germplasm for salt tolerance encounter the following limitations: (a) different phenotypic responses of plants at different growth stages, (b) different physiological mechanisms, (c) complicated genotype × environment interactions, and (d) variability of the salt-affected field in its chemical and physical soil composition. Plant molecular and physiological traits provide the bases for efficient germplasm screening procedures through traditional breeding, molecular breeding, and transgenic approaches. However, the quantitative nature of salinity stress tolerance and the problems associated with developing appropriate and replicable testing environments make it difficult to distinguish salt-tolerant lines from sensitive lines. In order to develop more efficient screening procedures for germplasm evaluation and improvement of salt tolerance, implementation of a rapid and reliable screening procedure is essential. Field selection for salinity tolerance is a laborious task; therefore, plant breeders are seeking reliable ways to assess the salt tolerance of plant germplasm. Salt tolerance in several plant species may operate at the cellular level, and glycophytes are believed to have special cellular mechanisms for salt tolerance. Ion exclusion, ion sequestration, osmotic adjustment, macromolecule protection, and membrane transport system adaptation to saline environments are important strategies that may confer salt tolerance to plants. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches. The first approach is selection of mutant cell lines from cultured cells and plant regeneration from such cells (somaclones). In vitro screening of plant germplasm for salt tolerance is the second approach, and a successful employment of this method in durum wheat is presented here. Doubled haploid lines derived from pollen culture of F1 hybrids of salt-tolerant parents are promising tools to further improve salt tolerance of plant cultivars. Enhancement of resistance against both hyper-osmotic stress and ion toxicity may also be achieved via molecular breeding of salt-tolerant plants using either molecular markers or genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Almansouri, M.; Kinet, J. M.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231: 243–254; 2001. doi:10.1023/A:1010378409663.

    CAS  Google Scholar 

  • Altman, A. From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. In Vitro cell. Dev. Biol.-Plant 39: 75–84; 2003. doi:10.1079/IVP2002379.

    CAS  Google Scholar 

  • Apse, M. P.; Aharon, G. S.; Snedden, W. A.; Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258; 1999. doi:10.1126/science.285.5431.1256.

    PubMed  CAS  Google Scholar 

  • Arzani, A. Grain quality of durum wheat germplasm as affected by heat and drought stress at grain filling period. Wheat Inf. Serv. 94: 9–14; 2002.

    Google Scholar 

  • Arzani, A.; Darvey, N. L. Quantitative genetic analysis of forage and dual purpose characteristics of triticale using doubled haploid lines. SABRAO J. Breed. Genet. 33: 87–98; 2001.

    Google Scholar 

  • Arzani, A.; Darvey, N. L. Comparison of doubled haploid lines and their mid-generation progenitors in forage and dual-purpose triticales under greenhouse hydroponic conditions. Euphytica 126: 219–225; 2002. doi:10.1023/A:1016327125850.

    CAS  Google Scholar 

  • Arzani, A.; Mirodjagh, S. S. Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell Tiss. Org. Cult. 58: 67–72; 1999. doi:10.1023/A:1006309718575.

    Google Scholar 

  • Asch, F.; Dingkuhn, M.; Dorffling, K.; Miezan, K. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113: 109–118; 2000. doi:10.1023/A:1003981313160.

    Google Scholar 

  • Ashraf, M. Breeding for salinity tolerance in plant. Crit. Rev. Plant Sci. 13: 17–42; 1994. doi:10.1080/713608051.

    Google Scholar 

  • Ashraf, M.; Athar, H. R.; Harris, P. J. C.; Kwon, T. R. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 97: 46–110; 2008.

    Google Scholar 

  • Ashraf, M.; Foolad, M. R. Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and nonsaline conditions. Adv Agron. 88: 223–271; 2005. doi:10.1016/S0065-2113(05)88006-X.

    Google Scholar 

  • Ashraf, M.; Foolad, M. R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Envir. Exp. Bot. 59: 206–216; 2007. doi:10.1016/j.envexpbot.2005.12.006.

    CAS  Google Scholar 

  • Ashraf, M.; Harris, P. J. C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16; 2004. doi:10.1016/j.plantsci.2003.10.024.

    CAS  Google Scholar 

  • Ashraf, M.; McNeilly, T. Variability in salt tolerance of nine spring wheat cultivars. J. Agron. Crop Sci. 160: 14–21; 1988. doi:10.1111/j.1439-037X.1988.tb01160.x.

    CAS  Google Scholar 

  • Barakat, M.; Abdel, Latif H. In vitro selection of wheat callus tolerant to high levels of salt plant regeneration. Euphytica 91: 127–140; 1996.

    Google Scholar 

  • Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J. Chlorophyll fluorescence as a possible toll for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol. 104: 667–673; 1994.

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K. K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27: 411–424; 2008. doi:10.1007/s00299-007-0474-9.

    PubMed  CAS  Google Scholar 

  • Boggini, G.; Doust, M. A.; Annicchiarico, P.; Pecetti, L. Yielding ability, yield stability, and quality of exotic durum wheat germplasm in Sicily. Plant Breeding 116: 541–545; 1997. doi:10.1111/j.1439-0523.1997.tb02187.x.

    CAS  Google Scholar 

  • Borowitzka, L. J. Solute accumulation and regulation of cell water activity. In: Paleg, L. G.; Aspinall, D. (eds.) Drought resistance in plants. Academic, New York, pp 97–130; 1981.

    Google Scholar 

  • Brini, F.; Hanin, M.; Mezghani, I.; Berkowitz, G. A.; Masmoudi, K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 58: 301–308; 2007. doi:10.1093/jxb/erl251.

    PubMed  CAS  Google Scholar 

  • Cachorro, P.; Ortiz, A.; Cerda, A. Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil 159: 205–221; 1994. doi:10.1007/BF00009282.

    CAS  Google Scholar 

  • Colmer, T. D.; Epstein, E.; Dvorak, J. Differential solute regulation in leaf blades of various ages in salt sensitive wheat and salt tolerant wheat × Lophopyrum elongatum (Host) Love amphiploid. Plant Physiol. 108: 1715–1724; 1995.

    PubMed  CAS  Google Scholar 

  • Cuartero, J.; Fernández-Muñoz, R. Tomato and salinity. Scientia Hortic. 78: 83–125; 1999. doi:10.1016/S0304-4238(98)00191-5.

    CAS  Google Scholar 

  • Daniells, I. G.; Holland, J. F.; Young, R. R.; Alston, C. L.; Bernardi, A. L. Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust. J. Exp. Agric. 41: 211–217; 2001. doi:10.1071/EA00084.

    Google Scholar 

  • Dasgupta, M.; Sahoo, M. R.; Kole, P. C.; Mukherjee, A. Evaluation of orange-fleshed sweet potato (Ipomoea batatas L.) genotypes for salt tolerance through shoot apex culture under in vitro NaCl mediated salinity stress conditions. Plant Cell Tiss. Organ Cult. 94: 161–170; 2008. doi:10.1007/s11240-008-9400-2.

    CAS  Google Scholar 

  • Dvorak, J.; Noaman, M. M.; Goyal, S.; Gorham, J. Enhancement of the salt tolerance of Triticum turgidum L. by the kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homeologous recombination. Theor. Appl. Genet. 87: 872–877; 1994. doi:10.1007/BF00221141.

    Google Scholar 

  • Dziadczyk, P.; Bolibok, H.; Tyrka, M.; Hortynski, J. A. In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica 132: 49–55; 2003. doi:10.1023/A:1024647600516.

    CAS  Google Scholar 

  • Epstein, E.; Norlyn, J. O.; Rush, D. W.; Kingsbury, R. W.; Kelly, D. B.; Cunningham, G. A.; Wrona, A. F. Saline culture of crops. Science 210: 399–404; 1980. doi:10.1126/science.210.4468.399.

    PubMed  CAS  Google Scholar 

  • Fadzilla, N. M.; Finch, R. P.; Burdon, R. H. Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J. Exp. Bot. 48: 325–331; 1997. doi:10.1093/jxb/48.2.325.

    CAS  Google Scholar 

  • FAO. FAO land and plant nutrition management service. Available online at: http://www.fao.org/ag/agl/agll/spush/. Accessed 25 April 2008; 2008.

  • Flowers, T. J. Improving crop salt tolerance. J. Exp. Bot. 55: 307–319; 2004. doi:10.1093/jxb/erh003.

    PubMed  CAS  Google Scholar 

  • Flowers, T. J.; Yeo, A. R. Breeding for salinity resistance in crop plants: where next. Aust. J. Plant Physiol. 22: 875–884; 1995.

    Google Scholar 

  • Forster, B. P.; Ellis, R. P.; Thomas, W. T. B.; Newton, A. C.; Tuberosa, R.; This, D.; El-Enein, R. A.; Bahri, M. H.; Ben Salem, M. The development and appkication of molecular markers for abiotic stress tolerance in barley. J. Exp. Bot. 51: 19–27; 2000. doi:10.1093/jexbot/51.342.19.

    PubMed  CAS  Google Scholar 

  • Francois, L. E.; Maas, E. V.; Donovan, T. J.; Youngs, V. L. Effect of salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and durum wheat. Agron. J. 78: 1053–1058; 1986.

    CAS  Google Scholar 

  • Gandonou, C.; Errabii, T.; Abrini, J.; Idaomar, M.; Senhaji, N. Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tiss. Org. Cult. 87: 9–16; 2006. doi:10.1007/s11240-006-9113-3.

    CAS  Google Scholar 

  • Garcia, A.; Senadhira, D.; Flowers, T. J.; Yeo, A. R. The effects of selection for sodium transport and of selection for agronomic characteristics upon salt resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 90: 1106–1111; 1995. doi:10.1007/BF00222929.

    CAS  Google Scholar 

  • Gaxiola, R. A.; Li, J. S.; Undurraga, S.; Dang, L. M.; Allen, G. J.; Alper, S. L.; Fink, G. R. Drought-and salt tolerant plants result from overexpression of the AVP1 H+pump. Proc. Natl. Acad. Sci. USA 98: 11444–11449; 2001. doi:10.1073/pnas.191389398.

    PubMed  CAS  Google Scholar 

  • Ghassemi, F.; Jakeman, A. J.; Nix, H. A. Salinization of land and water resources. University of New South Wales Press, Canberra1995.

    Google Scholar 

  • Gorham, J.; Wyn Jones, R. G. Utilisation of triticeae for improving salt tolerance in wheat. In: Lieths, H.; Masoom, A. A. (eds.) Towards the rational use of high salinity tolerant plants. Vol. 2. Kluwer, Dordrecht, pp 27–33; 1993.

    Google Scholar 

  • Gregorio, G. B.; Senadhira, D.; Mendoza, R. D.; Manigbas, N. L.; Roxas, J. P.; Guerta, C. Q. Progress in breeding for salinity tolerance and other abiotic associated stresses in rice. Field Crops Res. 76: 91–101; 2002. doi:10.1016/S0378-4290(02)00031-X.

    Google Scholar 

  • Hasegawa, P. M.; Bressan, R. A.; Handa, A. K. Cellular mechanisms of salinity tolerance. Hort Sci. 21: 1317–1324; 1986.

    CAS  Google Scholar 

  • Hasegawa, P. M.; Bressan, P. A.; Zhu, J.; Bohnert, H. J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499; 2000. doi:10.1146/annurev.arplant.51.1.463.

    PubMed  CAS  Google Scholar 

  • He, T.; Cramer, G. R. Cellular responses of two rapid-cycling Brassica species, B. napus and B. carinata, to seawater salinity. Physiol. Plant 87: 54–60; 1993. doi:10.1111/j.1399-3054.1993.tb08790.x.

    CAS  Google Scholar 

  • Houshmand, S.; Arzani, A.; Maibody, S. A. M.; Feizi, M. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Res. 91: 345–354; 2005. doi:10.1016/j.fcr.2004.08.004.

    Google Scholar 

  • Isla, R.; Aragues, R.; Royo, A. Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crops Res. 58: 97–107; 1998. doi:10.1016/S0378-4290(98)00088-4.

    Google Scholar 

  • Jamal, M.; Nazir, M. S.; Shah, S. H.; Ahmad, N. Varietal responses of wheat to water stress at different growth stages. III. Effect on grain yield, straw yield, harvest index and protein content in grain. Rachis 15: 38–45; 1996.

    Google Scholar 

  • James, R. A.; Rivelli, A. R.; Munns, R.; von Caemmerer, S. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct. Plant Biol. 29: 1393–1403; 2002. doi:10.1071/FP02069.

    CAS  Google Scholar 

  • Karadimova, M.; Djambova, G. Increased NaCl-tolerance in wheat (Triticum aestivum L. and T. durum Desf) through in vitro selection. In Vitro Cell Dev. Biol. 29: 180–182; 1993. doi:10.1007/BF02634177.

    Google Scholar 

  • Kelman, M.; Qualset, C. O. Breeding for salinity-stressed environment: recombinant inbred wheat lines under saline irrigation. Crop Sci. 31: 1436–1442; 1991.

    Google Scholar 

  • Kenny, L.; Caligari, P. D. S. Androgenesis of the salt tolerant shrub Atriplex glauca. Plant Cell Rep. 15: 829–832; 1996. doi:10.1007/BF00233149.

    CAS  Google Scholar 

  • Kingsbury, R. W.; Epstein, E. Selection for salt resistant in spring wheat. Crop Sci. 24: 310–315; 1984.

    Google Scholar 

  • Kovtun, Y.; Chiu, W. L.; Tena, G.; Sheen, J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. (USA) 97: 2940–2945; 2000. doi:10.1073/pnas.97.6.2940.

    CAS  Google Scholar 

  • Kurth, E.; Jensen, A.; Epstein, E. Resistance of fully imbibed tomato seeds to very high salinities. Plant Cell Envir. 9: 667–676; 1986. doi:10.1111/j.1365-3040.1986.tb01625.x.

    CAS  Google Scholar 

  • Lauchli, A.; Colmer, T. D.; Fan, T. W.; Higashi, R. M. Solute regulation by calcium in salt-stressed plants. In: Cherry, J. H. (Ed.), Biochemical and cellular mechanisms of stress tolerance in plants. NATO ASI Series H86: 443–461; 1994.

  • Lee, I. S.; Kim, D. S.; Lee, S. J.; Song, H. S.; Lim, Y. P.; Lee, Y. I. Selection and characterizations of radiation-induced salinity-tolerant lines in rice. Breed. Sci. 53: 313–318; 2003.

    CAS  Google Scholar 

  • Levitt J. Responses of plant to environmental stresses. Water, radiation, Salt and other stresses, Vol. 2. Academic, New York1980.

    Google Scholar 

  • Lin, H. X.; Zhu, M. Z.; Yano, M.; Gao, J. P.; Liang, Z. W.; Su, W. A.; Hu, X. H.; Ren, Z. H.; Chao, D. Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108: 253–260; 2004. doi:10.1007/s00122-003-1421-y.

    PubMed  CAS  Google Scholar 

  • Lindsay, M. P.; Lagudah, E. S.; Hare, R. A.; Munns, R. A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 31: 1105–1114; 2004. doi:10.1071/FP04111.

    CAS  Google Scholar 

  • Long, S.; Baker, N. Saline terrestrial environments. In: Baker, N.; Long, S. (eds.) Photosynthesis in contrasting environments. Elsevier, New York, pp 63–102; 1986.

    Google Scholar 

  • Lu, S. Y.; Peng, X. X.; Guo, Z. F.; Zhang, G. Y.; Wang, Z. C.; Wang, C. Y.; Pang, C. S.; Fan, Z.; Wang, J. H. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis × C-dactylon) and their physiological responses to salt and drought stress. Plant Cell Rep. 26: 1413–1420; 2007. doi:10.1007/s00299-007-0339-2.

    PubMed  CAS  Google Scholar 

  • Maas, E. V. Salt tolerance in plants. In: Christie, D. R. (ed.) Handbook of plant science in agriculture. CRC, Boca Raton, pp 57–75; 1985.

    Google Scholar 

  • Maas, E. V.; Poss, J. A. Salt sensitivity of wheat at various growth stages. Irrig. Sci. 10: 29–40; 1989.

    Google Scholar 

  • Maiti, R. K.; Amaya, L. E. D.; Cardona, S. I.; Dimas, A. M. O.; De La Rosa-Ibarra, M.; Castillo, H. D. Genotypic variability in maize cultivars (Zea mays L) for resistance to drought and salinity at the seedling stage. J. Plant Physiol. 148: 741–744; 1996.

    CAS  Google Scholar 

  • Malcolm, C. V.; Lindley, V. A.; O’Leary, J. W.; Runciman, H. V.; Barrett-Lennard, E. G. Germination and establishment of halophyte shrubs in saline environments. Plant Soil 253: 171–185; 2003. doi:10.1023/A:1024578002235.

    CAS  Google Scholar 

  • Mandal, A. B.; Pramanik, S. C.; Chowdhury, B.; Bandyopadhyay, A. K. Salt-tolerant Pokkali somaclones: Performance under normal and saline soils in Bay Islands. Field Crops Res. 61: 13–21; 1999. doi:10.1016/S0378-4290(98)00145-2.

    Google Scholar 

  • Mansour, M. M. F.; Salama, K. H. A. Cellular basis of salinity tolerance in plants. Envir. Exp. Bot. 52: 113–122; 2004. doi:10.1016/j.envexpbot.2004.01.009.

    CAS  Google Scholar 

  • Mansour, M. M. F.; Salama, K. H. A.; Al-Mutawa, M. M. Transport proteins and salt tolerance in plants. Plant Sci. 164: 891–900; 2003. doi:10.1016/S0168-9452(03)00109-2.

    CAS  Google Scholar 

  • Marschner, H. Mineral nutrition of higher plants. Academic, San Diego, p 889; 1995.

    Google Scholar 

  • McCue, K. F.; Hanson, A. D. Drought and salt tolerance: towards understanding and application. Trends Biotechnol. 8: 358–362; 1990. doi:10.1016/0167-7799(90)90225-M.

    CAS  Google Scholar 

  • Meneguzzo, S.; Navari-Izzo, F.; Izzo, R. NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. J. Plant Physiol. 156: 711–716; 2000.

    CAS  Google Scholar 

  • Miah, M. A. A.; Pathan, M. S.; Quayum, H. A. Production of salt tolerant rice breeding line via doubled haploid. Euphytica 91: 285–288; 1996. doi:10.1007/BF00033089.

    Google Scholar 

  • Misra, A. N.; Sahu, S. M.; Misra, M.; Singh, P.; Meera, I.; Das, N.; Kar, M.; Shau, P. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant. 39: 257–262; 1997. doi:10.1023/A:1000357323205.

    Google Scholar 

  • Mohammadi-Nejad, G.; Arzani, A.; Rezai, A. M.; Singh, R. K.; Gregorio, G. B. Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr. J. Biotech. 7: 730–736; 2008.

    Google Scholar 

  • Munns, R. Utilizing genetic resources to enhance productivity of salt-prone land: published as part of a theme on salt-prone land resources. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2: 1–11; 2007.

    Google Scholar 

  • Munns, R.; Hare, R. A.; James, R. A.; Rebetzke, G. J. Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69–74; 2000. doi:10.1071/AR99057.

    CAS  Google Scholar 

  • Munns, R.; Hussain, S.; Rivelli, A. R.; James, R. A.; Condon, A. G.; Lindsay, M. P.; Lagudah, E. S.; Schachtman, D.; Hare, R. A. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247: 93–105; 2002. doi:10.1023/A:1021119414799.

    CAS  Google Scholar 

  • Munns, R.; James, R. A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218; 2003. doi:10.1023/A:1024553303144.

    CAS  Google Scholar 

  • Munns, R.; James, R. A.; Lauchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57: 1025–1043; 2006. doi:10.1093/jxb/erj100.

    PubMed  CAS  Google Scholar 

  • Munns, R.; Rebetzke, G. J.; Husain, S.; James, R. A.; Hare, R. A. Genetic control of sodium exclusion in durum wheat. Aust. J. Agric. Res. 54: 627–635; 2003. doi:10.1071/AR03027.

    CAS  Google Scholar 

  • Munns, R.; Termaat, A. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13: 143–160; 1986.

    Google Scholar 

  • Norlyn, J. D.; Epstein, E. Barley production: irrigation with seawater on coastal soil. In: San Pietro, A. (ed.) Biosaline research: a look to the future. Plenum, New York, pp 525–529; 1982.

    Google Scholar 

  • Pecetti, L.; Gorham, J. Screening of durum wheat germplasm for 22Na uptake under moderate salinity. Cereal Res. Commun. 25: 923–930; 1997.

    Google Scholar 

  • Porcelli, C. A.; Gutierrez Boem, F. H.; Lavado, R. S. The K/Na and Ca/Na ratios and rapeseed yield, under soil salinity and sodicity. Plant Soil 175: 251–255; 1995. doi:10.1007/BF00011361.

    CAS  Google Scholar 

  • Queirs, F.; Fidalgo, F.; Santos, I.; Salema, R. In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol. Plant. 51: 728–734; 2007. doi:10.1007/s10535-007-0149-y.

    Google Scholar 

  • Rai, S. P.; Luthra, R.; Kumar, S. Salt-tolerant mutants in glycophytic salinity response (GSR) genes in Catharanthus roseus. Theor. Appl. Genet. 106: 221–230; 2003.

    PubMed  CAS  Google Scholar 

  • Rains, D. W. Plant tissue and protoplast culture: applications to stress physiology and biochemistry. In: Flowers, T. J.; Jones, M. B. (eds.) Plant under stress. Cambridge University Press, Cambridge, pp 181–197; 1989.

    Google Scholar 

  • Rawson, H. M.; Richards, R. A.; Munns, R. An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Aust. J. Agric. Res. 39: 759–772; 1988. doi:10.1071/AR9880759.

    Google Scholar 

  • Rebetzke, G. J.; Read, J. J.; Barbour, M. M.; Condon, A. G.; Rawson, H. M. A hand-held porometer for rapid assessment of leaf conductance in wheat. Crop Sci. 40: 277–280; 2000.

    Google Scholar 

  • Ren, Z. H.; Gao, J. P.; Li, L. G.; Cai, X. L.; Huang, W.; Chao, D. Y.; Zhu, M. Z.; Wang, Z. Y.; Luan, S.; Lin, H. X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. 37: 1141–1146; 2005. doi:10.1038/ng1643.

    PubMed  CAS  Google Scholar 

  • Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57: 1017–1023; 2006. doi:10.1093/jxb/erj108.

    PubMed  CAS  Google Scholar 

  • Richards, R. A. Should selection for yield in saline conditions be made on saline or non saline soils. Euphytica 32: 431–438; 1983. doi:10.1007/BF00021452.

    Google Scholar 

  • Rogers, M. E.; Noble, C. L. Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. Plant Soil 146: 131–136; 1992. doi:10.1007/BF00012005.

    CAS  Google Scholar 

  • Rogers, M. E.; Noble, C. L.; Halloran, G. M.; Nicolas, M. E. The effect of NaCl on the germination and early growth of white clover (Trifolium repens L.) populations selected for high and low salinity tolerance. Seed Sci. Technol. 23: 277–287; 1995.

    Google Scholar 

  • Santa-Maria, G. E.; Epstein, E. Potassium/sodium selectivity in wheat and amphiploid cross wheat × Lophopyrum elongatum. Plant Sci. 160: 523–534; 2001. doi:10.1016/S0168-9452(00)00419-2.

    PubMed  CAS  Google Scholar 

  • Senadhira, D.; Zapata-Arias, F. J.; Gregorio, G. B.; Alejar, M. S.; de la Cruz, H. C.; Padolina, T. F.; Galvez, A. M. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res. 76: 103–110; 2002. doi:10.1016/S0378-4290(02)00032-1.

    Google Scholar 

  • Serraj, R.; Sinclair, T. R. Osmolyte accumulation: can it really help increase crop yield under drought conditions. Plant Cell Environ. 25: 333–341; 2002. doi:10.1046/j.1365-3040.2002.00754.x.

    PubMed  Google Scholar 

  • Serrano, R. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int. Rev. Cytol. 165: 1–52; 1996. doi:10.1016/S0074-7696(08)62219-6.

    PubMed  CAS  Google Scholar 

  • Serrano, R.; Mulet, J. M.; Rios, G.; Marquez, J. A.; de Larriona, I. F.; Leube, M. P.; Mendizabal, I.; Pascual-Ahuir, A.; Proft, M.; Ros, R.; Montesinos, C. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50: 1023–1036; 1999. doi:10.1093/jexbot/50.suppl_1.1023.

    CAS  Google Scholar 

  • Shachtman, D. P.; Blum, A. J.; Dovrak, J. Salt tolerant Triticum × Lophopyrum derivatives limit the accumulation of sodium and chloride ions under saline stress. Plant Cell Envir 12: 47–55; 1989. doi:10.1111/j.1365-3040.1989.tb01915.x.

    Google Scholar 

  • Shachtman, D. P.; Munns, R. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 9: 331–340; 1992.

    Article  Google Scholar 

  • Shah, S.; Gorham, J.; Forster, B. P.; Wyn Jones, R. J. Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J. Exp. Bot. 38: 254–269; 1987. doi:10.1093/jxb/38.2.254.

    CAS  Google Scholar 

  • Shannon, M. C. Breeding, selection, and the genetics of salt tolerance. In: Staples, R. C.; Toenniessen, G. H. (eds.) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 231–254; 1984.

    Google Scholar 

  • Shannon, M. C. Adaptation of plants to salinity. Adv. Agron. 60: 75–120; 1997. doi:10.1016/S0065-2113(08)60601-X.

    Google Scholar 

  • Shannon, M. C.; Noble, C. Genetic approaches for developing economic salt tolerant crops. In: Tanjied, K. (ed.) Agricultural salinity assessment and management. ACSE manuals and reports on engineering practice. No. 17. ASCE, New York, pp 161–185; 1990.

    Google Scholar 

  • Singh, S.; Singh, M. Genotypic basis of response to salinity stress in some crosses of spring wheat Triticum aestivum L. Euphytica 115: 209–219; 2000. doi:10.1023/A:1004014400061.

    Google Scholar 

  • Srivastava, J. P.; Jana, S. Screening wheat and barley germplasm for salt tolerance. In: Staples, R. C.; Toenniessen, G. H. (eds.) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 273–283; 1984.

    Google Scholar 

  • Stumpf, D. K.; Prisco, J. T.; Weeks, J. R.; Lindley, V. A.; O’Leary, J. W. Salinity and Salicornia bigelovii Torr. seedling establishment: Water relations. J. Exp. Bot. 37: 160–169; 1986. doi:10.1093/jxb/37.2.160.

    Google Scholar 

  • Szarejko, I.; Forster, B. P. Doubled haploidy and induced mutation. Euphytica 158: 359–37; 2007. doi:10.1007/s10681-006-9241-1.

    Google Scholar 

  • Tal, M. Somaclonal variation for salt resistance. In: Bajaj, Y. P. S. (Ed.) Biotechnology in agriculture and forestry, Vol. 11, Somaclonal variation in crop improvement. Springer, Berlin; 1990: pp 236–257.

    Google Scholar 

  • Tal, M. In vitro methodology for increasing salt tolerance in crop plants. Acta. Hortic. 336: 69–78; 1993.

    Google Scholar 

  • Tal, M. In vitro selection for salt tolerance in crop plants: theoretical and practical considerations. In Vitro Cell. Dev. Biol.-Plant 30: 175–180; 1994.

    Article  Google Scholar 

  • Torres, C. B.; Bingham, F. T. Salt tolerance of Mexican wheat: 1. Effect of NO3 and NaCl on mineral nutrition, growth and grain production of wheat. Soil Sci. 37: 711–715; 1973.

    Google Scholar 

  • Uddin, M. I.; Qi, Y.; Yamada, S.; Shibuya, I.; Deng, X. P.; Kwak, S. S.; Kaminaka, H.; Tanaka, K. Overexpression of a new rice vacuolar antiporter regulating protein OsARP improves salt tolerance in tobacco. Plant Cell Physiol. 49: 880–890; 2008. doi:10.1093/pcp/pcn062.

    PubMed  CAS  Google Scholar 

  • Walia, H.; Wilson, C.; Condamine, P.; Liu, X.; Ismail, A. M.; Zeng, L.; Wanamaker, S. I.; Mandal, J.; Xu, J.; Cui, X.; Close, T. J. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 139: 822–835; 2005. doi:10.1104/pp.105.065961.

    PubMed  CAS  Google Scholar 

  • Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1–14; 2003. doi:10.1007/s00425-003-1105-5.

    PubMed  CAS  Google Scholar 

  • Wheatley, A. O.; Ahmad, M. H.; Asemota, H. N. Development of salt adaptation in in vitro greater yam (Dioscorea alata) plantlets. In Vitro Cell. Dev. Biol.—Plant 39: 346–353; 2003. doi:10.1079/IVP2002402.

    CAS  Google Scholar 

  • Witcombe, J. R.; Hollington, P. A.; Howarth, C. J.; Reader, S.; Steele, K. A. Breeding for abiotic stresses for sustainable agriculture. Phil. Trans. R. Soc. B 363: 703–716. 2008. doi:10.1098/rstb.2007.2179.

    PubMed  CAS  Google Scholar 

  • Xue, Z. Y.; Zhi, D. Y.; Xue, G. P.; Zhang, H.; Zhao, Y. X.; Xia, G. M. Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 167: 849–859; 2004. doi:10.1016/j.plantsci.2004.05.034.

    CAS  Google Scholar 

  • Yancy, P. H.; Clark, M. E.; Hand, S. C.; Bowlus, R. D.; Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222; 1982. doi:10.1126/science.7112124.

    Google Scholar 

  • Yoshida, K. Plant biotechnology: genetic engineering to enhance plant salt tolerance. J. Biosci. Bioengin. 94: 585–590; 2002.

    CAS  Google Scholar 

  • Zair, I.; Chlyah, A.; Sabounji, K.; Tittahsen, M.; Chlyah, H. Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tiss. Org. Cult. 73: 237-; 2003.

    CAS  Google Scholar 

  • Zeng, L.; Kwon, T. R.; Liu, X.; Wilson, C.; Grieve, C. M.; Gregorio, G. B. Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptation to saline soils. Plant Sci. 166: 1275–1285; 2004. doi:10.1016/j.plantsci.2004.01.005.

    CAS  Google Scholar 

  • Zeng, L.; Shannon, M. C.; Grieve, C. M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 127: 235–245; 2002. doi:10.1023/A:1020262932277.

    CAS  Google Scholar 

  • Zhang, H. X.; Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol. 19: 765–768; 2001. doi:10.1038/90824.

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor M.M.F. Mansour, Ain Shams University, Cairo, Egypt for critical reading of the manuscript and for helpful comments. Thanks also go to S.H. Mirodjagh, M. Feizi, and S. Houshmand for their contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Arzani.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzani, A. Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell.Dev.Biol.-Plant 44, 373–383 (2008). https://doi.org/10.1007/s11627-008-9157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9157-7

Keywords

Navigation